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Resumo 

Introdução e objetivos: a segmentação automática de coronariografia (CRG) por 

inteligência artificial (IA) encontra-se pouco explorada na literatura médica. Os objetivos 

do presente estudo são (1) desenvolver modelos de IA para segmentação de CRG e (2) aferir 

os resultados por scores de similaridade e critérios definidos por peritos. 

Métodos: doentes submetidos a CRG foram retrospectivamente selecionados 

aleatoriamente num centro. Por incidência, segmentou-se um frame ideal, formando uma 

segmentação humana basal (HB), usada para treinar um modelo de IA basal (IAB). Da 

combinação de ambos formou-se uma segmentação humana aperfeiçoada (HA), utilizada 

para treinar um modelo de IA aperfeiçoado (IAA). Os resultados foram aferidos com 11 

critérios balanceados definidos por peritos, combinados num Score de Segmentação Global 

(SSC – 0 – 100 pontos). O Score de Dice Generalizado (SDG) e Score de Dice de Similaridade 

(SDS) aplicaram-se aos modelos de IA. 

Resultados: geraram-se 1664 imagens processadas. Os SCC para a HB, HA, IAB e IAA foram 

96,9 +/-5,7; 98,9 +/- 3,1; 86,1 +/- 10,1 e 90 +/- 7,6, respetivamente (IC 95%, p < 0,001 - 

diferenças globais e emparelhadas). O SDG para o IAB e IAA foi 0,9234 ± 0,0361 e 0,9348 ± 
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0,0284, respetivamente. O SDS foi 0,8904 ± 0,0464 e 0,9134 ± 0,0410 para o IAB e IAA, 

respetivamente. O IAA exibiu superior desempenho ao IAB para as todas tarefas de 

segmentação coronária, mas não para todas as de cateter. 

Conclusões: desenvolvemos modelos de IA de segmentação automática de CRG, com bom 

desempenho de acordo com aferição por todos os scores. 
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Abstract 
 
Introduction and Objectives: Although automatic artificial intelligence (AI) coronary angiography (CAG) 

segmentation is arguably the first step toward future clinical application, it is underexplored. We aimed to (1) 

develop AI models for CAG segmentation and (2) assess the results using similarity scores and a set of criteria 

defined by expert physicians. 

Methods: Patients undergoing CAG were randomly selected in a retrospective study at a single center. Per 

incidence, an ideal frame was segmented, forming a baseline human dataset (BH), used for training a baseline AI 

model (BAI). Enhanced human segmentation (EH) was created by combining the best of both. An enhanced AI 

model (EAI) was trained using the EH. Results were assessed by experts using 11 weighted criteria, combined 

into a Global Segmentation Score (GSS: 0–100 points). Generalized Dice Score (GDS) and Dice Similarity 

Coefficient (DSC) were also used for AI models assessment. 

Results: 1664 processed images were generated. GSS for BH, EH, BAI and EAI were 96,9 +/-5.7; 98.9 +/- 3.1; 

86.1 +/- 10.1 and 90 +/- 7.6, respectively (95% confidence interval, p<0.001 for both paired and global differences). 

The GDS for the BAI and EAI was 0,9234 ± 0,0361 and 0,9348 ± 0,0284, respectively. The DSC for the coronary 

tree was 0,8904 ± 0,0464 and 0,9134 ± 0,0410 for the BAI and EAI, respectively. The EAI outperformed the BAI in 

all coronary segmentation tasks, but performed less well in some catheter segmentation tasks. 

Conclusions: we successfully developed AI models capable of CAG segmentation, with good performance as 

assessed by all scores. 
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Introduction 
 

Artificial intelligence (AI) has shown great potential in medicine, in applications such as predictive data analysis1, 

decision making support2 or even medical education/awareness improvement,3 and especially in image analysis. 



Several publications have demonstrated impressive results with regards to electrocardiogram4, 

echocardiography,5,6 or magnetic resonance imaging.7,8 

The use of AI in Interventional Cardiology (IC) is, however, still a vastly underexplored field. Its application to 

coronary angiography (CAG) has been explored in very few medical or biology publication.9–12 There are, 

nonetheless, many possibilities,13 ranging from automatic anatomical identification, stenosis analysis, lesion subset 

characterization and perhaps even physiological index derivation. Regardless of the task, arguably the first step in 

applying AI to CAG is separating and identifying relevant information – the coronary tree – from non-relevant 

information (bones, other structures). This task is called segmentation.14 

 

In this paper, we explore the development of AI models capable of automatic coronary artery segmentation from 

CAG, and assess the results from a clinical perspective, using a new set of criteria and score clinically defined by 

a panel of Interventional Cardiologists. 

 

Methods 
 

Dataset selection 
 

Inclusion criteria 
We retrospectively and randomly included patients who had undergone CAG and invasive physiology assessment 

(fractional flow reserve and/or other indexes) during the procedure at a single center (tertiary university hospital). 

These patients have at least intermediate lesions in one or more vessels. Around one third usually undergo 

revascularization due to the severity of their disease.15,16 Therefore, a dataset focusing on these patients comprises 

a wide spectrum of obstructive coronary artery disease in a relatively balanced way. 

 

Exclusion criteria 
We excluded cases where any of the following applied: 

1) Major occluded vessels (acute or chronic) 

2) Poor image quality 

3) Less than two orthogonal views in the left coronary artery (LCA) - one caudal and one cranial - or absence 

of at least one left oblique (LAO) view - either cranial or simple - in the right coronary artery (RCA) 

4) Patients with previous cardiac surgery, cardiac devices or other sources of potential artifact. 

 

Image selection 
A single best frame was selected for each diagnostic angulation incidence in each patient, 

 

Dataset size 
The dataset size was the result of a trade-off between two opposing criteria: dimension large enough for successful 

training of a deep convolutional neural network, estimated from published data9,12,17,18 vs. expected time required 

to complete the annotation. We estimated the latter based on a short period of annotation testing prior to formal 

dataset creation. The trade-off pointed to a training set size of roughly 400. 

We then randomly and consecutively selected patients until a total of at least 400 annotated images were obtained. 

 

Baseline annotation process 



 

Baseline human dataset images were annotated by two senior Cardiology Fellows (TR/BS) previously trained in 

CAG interpretation, under the supervision of an Interventional Cardiologist (MNM), who also annotated. Images 

were periodically reviewed and perfected by all three. This meant that any initial heterogeneity between annotators 

was corrected by consensus. The small size of the team was aimed at reducing heterogeneity, as we noticed during 

the preparatory phase that some operators tended to annotate too much ( Supplementary figure 1), while others 

did the opposite Supplementary figure 2). 

 

Both the catheter (labeled red) and the coronaries (labeled white) were to be segmented. 

 

The coronary tree was to be fully segmented up to branches of approximately 2 mm in caliper at their origin (as the 

vessel became smaller, it was to be segmented until discernible), using the catheter as reference (without formal 

measurements – eyeball appreciation was used). There were several reasons for this: (1) when performing 

percutaneous coronary intervention, vessels <2 mm are usually approached conservatively, as the risk of target 

lesion failure increases significantly19,20; (2) human annotation is cumbersome – segmenting every single vessel 

would increase the risk of errors significantly; (3) including very small vessels might increase the chances of 

artifacts from bone or other structures when training and applying AI models. 

 

 

Baseline artificial intelligence model training 
 

We performed segmentation using an encoder-decoder fully convolutional neural network based on the U-Net,21 

commonly used in medical image segmentation. As the name suggests, these neural networks are composed of 

an encoder, responsible for extracting image features, and a decoder, which processes those features to produce 

segmentation masks. To derive the best approach for this task, we conducted a comparative study of encoder and 

decoder architectures, which resulted in the proposal of the EfficientUNet++, a computationally efficient and high-

performing decoder architecture22 that, in this work, we combine with an EfficientNet-B5 encoder23 (Figure 1). 

 

To ensure fair evaluation, it was necessary to guarantee that each model was tested on data that it had not seen 

during training. Therefore, the dataset was split, at the patient level, into 13 subsets of approximately 32 angiograms 

each. Each subset segmentation was performed using a neural network trained exclusively on the remaining data. 

This enabled the assessment of the segmentation results for the entire cohort, as the usual splitting into a training 

and testing dataset would have yielded a much smaller group of images for result assessment. 

 

The training hyperparameters, including the number of training epochs and the learning rate decay schedule, were 

set on the first train-test split, using one of the 12 training data subsets for validation. The selected values were 

then used on every other train-test split, and to train the model on the whole training set of the first split. 

 

 

 

 

Enhanced human model 
 



The results of the baseline AI training were reviewed by the annotating team, without any formal grading, which 

would be performed subsequently (see below). For each image, both human and AI segmentation were compared 

with the original. Each annotation was then perfected using a mixture of the best of baseline human segmentation 

and baseline AI, with additional de novo manual segmentation as needed. 

 

Enhanced artificial intelligence model 
 

The neural network architecture and training procedure were identical for both the baseline and enhanced AI model 

(figure 1). The sole difference was the dataset. The baseline AI model was trained using the baseline human 

annotations, whereas the enhanced AI model was trained using enhanced human annotations. 

 

Figure 2 outlines the development stages. 

 

Performance assessment 
 

Non-medical metrics 
AI models were assessed using the Dice Similarity Coefficient (DSC) and Generalized Dice Score (GDS), 

measures of the overlap between segmentations. Given two segmentations, the DSC has a value between 0: no 

overlap and 1: total overlap, corresponding to the ratio between the area of their intersection and the sum of their 

areas. GDS24 is a weighted sum of each class's DSC that attributes the same importance to all classes, regardless 

of their frequency. While DSC and GDS alone do not reflect clinical usefulness, they are helpful and entirely 

objective metrics that enable a simple comparison between models. 

 

Clinical performance criteria 
The DSC objectively assesses model performance. However, it does not provide a medically meaningful 

impression of whether segmentation is appropriate. Also, because the DCS can only be calculated based on 

previously annotated images, it cannot be applied to new, unannotated datasets in the future. To overcome these 

limitations, we created a set of criteria to assess performance as interpreted by expert physicians. 

 

The following 11 criteria are as objectively defined as possible and were analyzed for each image. Each was 

independently met or not. A “perfect” example is shown in Figure 3. Supplementary Figures 3 to 13 show error 

examples for each. 

 

1) Catheter segmentation: 

a. Main segmentation: The distal part of the catheter (i.e. the closest discernible portion to the 

coronary artery in the ascending aorta) is correctly segmented and labeled (supplementary figure 

3). If minor gaps are present, this criterion should be scored as met. 

b. Gaps (minor) are absent (supplementary figure 4). 

c. Catheter thickness is accurate, by visual appreciation (supplementary figure 5). 

d. Location: if parts of the catheter far from the coronary ostia (ascending and/or descending aorta) 

are segmented, there are no major gaps or artifacts (supplementary 6). 

2) Vessel segmentation: 

a. Main vessels are correctly segmented and labeled. For the RCA, this includes the segments 

from the ostium to the crux (supplementary figure 7). For the LCA, this includes the segments 



from the left main ostium to the visually discernible distal segments of the left anterior descending 

or the circumflex (or most important obtuse marginal branch), depending on incidence. Branches 

are excluded from this criterion. If minor gaps are present, this criterion should be scored as met. 

b. Branch segmentation: branches with a luminal diameter of at least approximately 2 mm (using 

the catheter size as reference) are correctly segmented and labeled (supplementary figure 8). 

Size is estimated by visual appreciation. If minor gaps are present, this criterion should be scored 

as met. 

c. Main vessel gaps (minor) are absent (supplementary figure 9). 

d. Branch gaps (minor) are absent (supplementary figure 10). 

e. Catheter to artery transition: correct labeling of the catheter tip vs. coronary artery origin 

(supplementary figure 11). 

3) Artifacts 
a. Coronary: No non-coronary structures are labeled as part of the coronary tree (supplementary 

figure 12). 

b. Catheter: No non-catheter structures are incorrectly labeled as part of the catheter 

(supplementary figure 13). 

The criteria for these two artifacts are not applicable to the small catheter-artery transition area. 

 

To provide an objective assessment, these criteria were scored by a panel of three Interventional Cardiologists 

(MNM, ARF, PCF), of whom two (ARF, PCF) took no part in any stage of the annotation/training process. 

Discrepancies were solved by agreement. All images were graded across all groups: baseline human 

segmentation, enhanced human segmentation, baseline AI and enhanced AI. During the grading process, the 

image group was blinded. 

Lastly, because the abovementioned criteria are not equally important, a Global Segmentation Score (GSS – 1.5 

to 100 points) was devised, taking into account the relevance of each criterion as defined by the three experts 

(Table 1). The panel was also asked to select which of the two AI models was preferred for each image, regardless 

of the final score. 

 

Statistical analysis 
 

Descriptive variables are shown in absolute and relative (percentage) numbers. To assess the association between 

qualitative (categorical) variables the Chi-Square test was used. To assess differences in quantitative variables we 

used the Mann-Whitney test (two independent groups) or the Kruskal-Wallis test (multiple independent groups). A 

p<0.05 was used for statistical significance, except for multiple groups comparisons, where we used a p< 0.01. 

IBM SPSS Statistics 27 was used for statistical analysis. 

 

Ethical issues 
 

This study complies with the Declaration of Helsinki and was approved by the local ethics committee. 

  



Results 
 

Baseline dataset 
 

We included 416 images from 69 patients (Table 2). With two human and two AI datasets, 1664 processed images 

were generated. 

 

Performance assessment 
 

Non-medical metrics 
 

Results are outlined in Table 3. These scores indicate that enhanced AI was generally superior to baseline AI. 

Segmentation performance was good and consistent across arteries, as indicated by the high mean and low 

standard deviation of the DSC. For the catheter, performance was lower and much less consistent. 

 

Clinical performance 
 
Overall performance – individual criteria assessment (Supplementary table 1) 
Coronary segmentation 
The main vessels were correctly segmented in almost all cases across groups. Minor gaps occurred rarely in the 

baseline human segmentation and both AI models, although there was a small but non-significant improvement 

with the enhanced AI vs. baseline AI. 

Branch segmentation was also correct almost always in all groups, albeit less so than main vessel segmentation. 

There was a small, yet significant, improvement with the enhanced AI vs. baseline AI. 

Minor branch gaps were quite common, revealing very significant differences between AI and human models. While 

enhanced AI performed numerically better than baseline AI, it still produced small gaps in nearly two thirds of 

cases. 

Coronary artifacts were very uncommon in human annotations and were usually minor imperfections in 

catheter/coronary crossovers. They were common and usually minor in both AI models, although there was a very 

significant improvement with the enhanced AI vs. baseline AI (14.4% vs. 25.7%). 

 

Catheter/artery transition 
Baseline human segmentation failed in 12% of cases and enhanced human segmentation missed 3.8%. Baseline 

AI produced a higher error rate (19.7%), but enhanced AI was numerically more often correct than baseline human 

segmentation, sometimes correctly identifying the transition where humans failed (Figure 4). 

 

Catheter segmentation 
Baseline human segmentation produced thickness imperfections (usually mildly engorged catheter) in 13.9% of 

cases, but otherwise, segmentation was almost always correct regarding other criteria. Baseline AI produced low 

error rates in main body segmentation. However, artifacts, usually quite minor and in the vicinity of coronary 

segments, occurred very frequently (41.1%). Another common error was catheter thickness (36.3%), often resulting 

in an overestimation of catheter size. 



Enhanced human segmentation significantly improved on thickness issues, although imperfections persisted in 

6.2% of cases. 

Enhanced AI produced better results than the baseline AI model for catheter thickness (correct in 96.4%), also 

surpassing both human models (although the difference was not statistically significant when compared to the 

enhanced human segmentation). However, the performance of the enhanced AI otherwise decreased in all other 

criteria, especially regarding minor gaps, which became much more common (3.1% in the baseline AI model to 

23.3%). Even main body segmentation was significantly affected, although successful in the vast majority of cases 

(86.5%). Despite this, in most failures catheter identification was still possible, as major gaps often occurred distally 

in areas of contrast backflow. There was a slight numerical worsening in artifact and location issues in enhanced 

AI vs. baseline AI. 

 
Overall performance – Global Segmentation Score assessment and expert preference (table 4) 
Human models outperformed AI models. Enhanced models surpassed baseline models. The difference was 

statistically significant for all comparisons. GSS was very high for both AI models; the enhanced AI reached an 

average of 90 points. 

With regards to expert preference, the enhanced AI model was preferred in 300 (72%) cases, the baseline AI model 

in 100 (24%) and in 16 (4%) cases no AI model was preferred. 

 

Performance according to coronary artery – individual criteria assessment (Supplementary 
table 2) 
There was a trend toward better performance in the RCA, both regarding human and AI groups. The most notable 

and statistically significant differences occurred in catheter transition (regarding both AI models and the baseline 

human segmentation) and catheter segmentation (both AI models performed better in the RCA). Branch gaps were 

quite less frequent in the RCA with the enhanced AI model. Other differences, even if statistically significant, were 

very small. 

 

Performance by coronary artery – Global Segmentation Score assessment (Supplementary table 
3) 
All models scored very high for both arteries. There were very minor statistically significant differences for the 

baseline AI model only, favoring RCA segmentation. 

 

Considering expert preference: 

- RCA: Enhanced AI was preferred in 109 (68.6%) cases, the baseline AI was preferred in 43 (27%) and in 

7 (4.4%) cases no AI model was preferred. 

- LCA: Enhanced AI was preferred in 191 (74.3%) cases, the baseline AI was preferred in 57 (22.2%) and 

in 9 (3.5%) cases no AI was preferred. 

 

Performance according to angulation incidence – individual criteria assessment 
(Supplementary tables 4 and 5) 
Given the large amount of data, there being no significant differences in the vast majority of cases and for the sake 

of readability, only statistically significant differences are shown in the tables. Overall, the impact of incidences on 

model performance was limited, and affected almost exclusively the AI models. 

 

 



Performance according to angulation incidence – Global Segmentation Score assessment 
(Supplementary tables 6 and 7) 
 

Differences were minor and only statistically significant for human performance in less common incidences (PA 

views for the LCA and PA cranial for the RCA). 

 

 

Discussion 
 

Overall considerations 
Baseline human segmentation was generally correct. Catheter/coronary transition and catheter thickness errors 

were the most common. Poor individualization due to contrast backflow, catheter curves and human fatigue all 

likely contributed. 

Enhanced human segmentation was nearly perfect. Mild transition issues remained, highlighting the difficulty of 

the task. As this model was actually a combination of the best of baseline human segmentation and baseline AI, it 

also demonstrates how AI can help improve human performance. Even these slight human imperfections highlight 

the need for rigorous quality control during and after the final results, rather than assuming human annotation is a 

“perfect” ground truth. This an inherent limitation to the annotation of medical images, as the sheer amount of 

cumbersome work is error prone. 

 

Baseline AI performed CAG segmentation successfully yet was affected by the same two issues of the baseline 

human segmentation – transition and catheter thickness. The effort to correct these when developing the enhanced 

AI was fruitful in the case of transition but produced mixed results for catheter thickness. Impact on transition 

performance was impressive, as, at times, the enhanced AI even achieved correct assessments where humans 

failed (Figure 4). However, it seems the gain in catheter thickness accuracy was offset by losses in other catheter 

segmentation tasks. Lastly, every aspect of coronary segmentation improved in the enhanced AI, which performed 

better than baseline AI. The differences between the two AI models also highlight how relatively small differences 

in the ground truth can impact relevantly on AI training. 

It may seem surprising that catheter segmentation was less successful than coronary segmentation. However, 

while intuitively one may think that catheter segmentation is an easier task and therefore the results would have 

been better for this task, from a machine learning perspective that is not the case. In particular, segmentation 

performance is highly dependent on the frequency of each class. Rarer classes, or ones that occupy smaller areas, 

are interpreted by the model as being less likely to appear. Furthermore, during training, the lower the number of 

pixels belonging to a particular class, the lower the penalty for segmenting that class incorrectly. Even though we 

used a loss function designed to mitigate this phenomenon, the poorer segmentation of less common classes (the 

catheter, in this case) is still evident in the results. 

 

Right coronary artery segmentation was easier than LCA, however the differences were quite small and there were 

fewer than expected, considering its greater anatomical simplicity. Angulations also had a relatively small impact 

both on human and AI performance and small observed differences may be attributed to specific issues that are 

more common in certain incidences: contrast backflow (less problematic in PA or RAO caudal); coronary/catheter 

crossovers (such as spider or extreme RAO cranial – Figure 5); proximity of bone (such as RCA LAO views); 

smaller samples of some incidences, such as PA cranial; uncommon catheter pathways, such as the femoral 

approach, which sometimes produces a central vertical outline. 



 

Globally, both AI models achieved a very high DSC, with higher performance in artery segmentation than in catheter 

segmentation, supporting the results of qualitative clinical assessment. When factors are weighed up based on 

their perceived relevance – as assessed by GSS – both performed very well. The enhanced AI scored an average 

of 90 points, meaning it provided 90% of what experts deemed most relevant when viewing a CAG. By all 

measures, the enhanced AI was the better model. However, the fact that differences between the two AI models 

were not large and that the enhanced AI was preferred in most, but not all cases, highlights the difficulty in improving 

an already good performance. 

 

Other studies with artificial intelligence applied to coronary angiography 
segmentation/interpretation 
Few studies regarding coronary artery segmentation based on AI technologies have been published in 

medical/biology journals to date. Yang et al.12 successfully developed AI models capable of segmenting CAG. Their 

dataset was larger (3302 images/2042 patients) and was also annotated by two expert physicians. Different 

incidences were also used. They also focused exclusively on segmenting specific segments of major vessels with 

at least mild (>30%) stenotic lesions. Neither the branches nor the catheter were segmented, leading to a much 

simpler problem than the one addressed in this article. 

 

Two other work,s9,10 from the same baseline dataset, also developed AI-based CAG segmentation. Their dataset 

was also larger (4904 images from 170 videos). However, the annotations were performed by medical students 

and no details are provided regarding patient subset, target vessel or incidence. 

 

Very recently, Du et al. 11 published the results of a broad study. They focused on two tasks: CAG segmentation 

and special lesion morphology identification (calcium, thrombus, among others). For the former task, which 

overlaps with ours, they used a very large dataset of 13373 images distributed across ten incidences (six LCA and 

four RCA), annotated by ten qualified analysts. This was an all-comers study, rather than focusing on patient 

subsets. They too annotated catheter/arteries and additionally marked different coronary segments. Their model is 

impressive as judged by the presented images, as they even distinguished between contrast backflow, catheter 

and coronary. However, they did not specify the exact criteria for segmenting the coronary tree and their exact 

metrics make it difficult to assess exactly how their models performed in detail regarding segmentation. 

 

While all the abovementioned groups have worked with datasets larger than ours, our study has several unique 

features: (1) there was medical rationale for vessel size segmentation; (2) results were assessed from a set of 

criteria defined by experts, capturing the quality of the segmentation from an Interventional Cardiologist’s eyes; (3) 

human annotations were also graded, rather than assuming a perfect human ground truth; (4) specific 

segmentation tasks were appraised individually, enabling insights into strengths and weaknesses of AI and human 

models alike; (5) results were also considered globally with the GSS, by factoring the relevance of each criterion, 

enabling a broad, simple appreciation of the results. Furthermore, the ability to perform high-quality segmentation 

in a system trained using less data provides relevant evidence that more advanced AI systems can be effectively 

applied even in situations where the available data are limited. 

 

 

 

 



Limitations 
This is a single center retrospective dataset, involving a single image per projection and a smaller sample size than 

some previously published manuscripts. The images come from the same angiography devices (Siemens Artis) 

and thus we have not yet tested our models on images obtained from other equipment or image settings. 

We have not yet conducted formal assessment on how well the models perform in segmenting specific degrees of 

stenosis severity. Our models are also yet to be tested for specific vessel disease types (calcium, thrombus), clinical 

settings (chronic total occlusion, ST-elevation myocardial infarction). 

We have not yet assessed the performance of AI models on an external validation cohort. There are several 

reasons for this. We aimed to compare AI and human results in detail first and assess the exact performance of AI 

models for each segmentation task. A validation dataset would comprise a new set of images, which would not 

undergo human segmentation, thus impeding comparison with human performance. Also, validation implies that a 

metric be available for comparing results. Because the Dice methods require a ground truth human annotation for 

comparison, and the GSS was developed and applied for the first time for this paper, we felt a suitable metric was 

not yet available for performing validation prior to the current analysis. In addition, AI models are continuously and 

dynamically improving. As we are currently working on further testing and enhancing current AI models (view Future 

direction and implications section below), we felt performing external validation at this stage was premature. 

The exclusion of cardiac devices/cardiac surgery and other foreign objects renders our models not yet applicable 

to such cases. We did not, however, exclude cases with previously implanted stents. 

Lastly, focusing specifically on patients undergoing invasive physiology assessment may have created bias, limiting 

a broader application of the models to other patient subsets. 

We are currently working to address all these issues in future research. 

 

Future direction and implications 
Coronary angiography segmentation in itself is not a end objective but rather an essential milestone for developing 

AI systems capable of CAG analysis and interpretation. These results should, therefore, be regarded as a first step, 

rather than a final deployment tool. While not yet mature for immediate clinical application, the results of both AI 

models are already relevant, providing a framework that can be built upon in the future. 

Further steps include testing the models for stenosed segments, which will be critical for clinical application. In the 

future, we aim to test our models with a validation cohort using new angiograms. Sub-segmentation, automatic 

anatomical identification and physiology are also areas for future research. 

We will also strengthen the capabilities of our models further by broadening our training base to other patient and 

lesion subsets, focusing on particular issues where there is still room for improvement, as identified by our uniquely 

detailed analysis. 

Our results also provide insight into which human tasks are most challenging, which may be of use to other 

researchers. 

Global Segmentation Score is the first of its kind for assessing the quality of segmentations in CAG. By providing 

a reasonably objective and quantitative clinical measurement, it can be used as a benchmark for comparing and 

validating results across research groups. 

Lastly, while conventional segmentation software does exist, it is not without limitations, and only by developing AI 

systems can we compare and improve both in the future. The potential implications of AI for Interventional 

Cardiology are immense, and we envisage a catherization lab of the future where all of these insights render the 

human eye more objective, thus improving patient care. 

 

 



 

Conclusions 
We successfully developed two AI models capable of good quality automatic CAG segmentation, as assessed by 

GDS, DSC and the GSS. From an expert’s perspective, the latter and its individual criteria provided a feasible, 

reasonably objective and quantifiable way of assessing the results. 

The enhanced AI model outperformed the baseline AI model in coronary segmentation tasks as well as globally. 

With regards to catheter segmentation tasks, the enhanced AI model improved on the task of catheter thickness, 

but performed less well in other catheter segmentation tasks. Both human segmentations were superior to both AI 

models, but only the enhanced human segmentation, built by combining the best of baseline human segmentation 

and baseline AI, achieved a near perfect GSS. 

These results provide a relevant framework for building upon, potentially leading to future clinical application. 
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Figure Legends 
 
Figure 1: Segmentation model composed of an EfficientNet-B5 encoder and an EfficientUNet++ decoder. 

 

Figure 2: Annotation and training process. 

 

Figure 3: A segmentation case fulfilling all 11 criteria. 

 

Figure 4 (left to right): The first human segmentation incorrectly labels contrast backflow as coronary. The baseline 

AI model improves on the human segmentation but is still not perfect. The enhanced human model segments the 

transition perfectly. The enhanced AI model is hampered in catheter segmentation but identifies the transition 

correctly. 

 

Figure 5: Crossovers in spider (above) and extreme RAO cranial (below) views generating artifacts. 

 

Supplementary Figure 1: A test case with too many annotated vessels (not used for training). 

 

Supplementary Figure 2: A test case with too few annotations (not used for training). 

 

Supplementary Figure 3: Contrast backflow leads the artificial intelligence model to disregard most of the 

catheter. 

 

Supplementary Figure 4: Minor catheter gaps, possibly facilitated by contrast backflow. 

 

Supplementary Figure 5: Catheter thickness is overestimated. 

 

Supplementary Figure 6: A small part of the catheter in the descending aorta was segmented in a femoral access 

case. 

 

Supplementary Figure 7: A major part of the left main was not segmented. 

 

Supplementary Figure 8: The posterolateral branch and much of the posterior descending artery were missed. The 

enhanced artificial intelligence model did not miss these vessels. 

 

Supplementary Figure 9: A small gap is visible in the left anterior descending artery. 

 

Supplementary Figure 10: Small gaps are visible in branches. 

 

Supplementary Figure 11: Contrast backflow renders the transition less discernible, leading the model to miss the 

transition zone. 

 

Supplementary Figure 12: A part of the intervertebral disk and vertebra are mislabeled as coronary. 

 

Supplementary Figure 13: Contrast backflow is mislabeled as catheter. 

 



Tables 
 

Table 1: scoring metrics for application of the Global Segmentation Score. 

Criteria 
Catheter vs. Coronary 

Relative Weight 
Individual Criteria 

Relative Weight 
Points 

Main vessel segmentation 

70% 

40% 28.0 

Main vessel gaps 10% 7.0 

Catheter to artery transition 15% 10.5 

Branch segmentation 20% 14.0 

BranchGaps 5% 3.5 

Coronary artifacts 10% 7.0 

Catheter segmentation 

30% 

40% 12.0 

Catheter gaps 10% 3.0 

Catheter artifacts 15% 4.5 

Catheter location 5% 1.5 

Catheter thickness 30% 9.0 

Total   100 

 

  



 

Table 2: Baseline clinical characteristics of patients from whom images were analyzed. 

Factor N +/- SD or N(%) 
Age 67 +/- 11 

Sex (male) 54 (78%) 

Hypertension 56 (81.2%) 

Diabetes mellitus 27 (39.1%) 

Dyslipidemia 39 (56.5%) 

Smoker (past or present) 26 (37.7%) 

Chronic coronary syndromes 50 (72.5%) 

Acute coronary syndrome 19 (27.5%) 

Revascularization during/after CAG 21 (30.4%) 

 

  



 

Table 3: Generalized Dice Score and class-wise Dice Similarity Coefficient obtained by the baseline and enhanced 

AI models. Results presented as mean ± standard deviation. 

 BAI EAI 
GDS 0.9234±0.0361 0.9348±0.0284 

Artery DSC 0.8904±0.0464 0.9134±0.0410 

Catheter DSC 0.7526±0.1998 0.7975±0.1836 

BAI: baseline AI model; EAI; enhanced AI model 

  



Table 4: performance by group according to Global Segmentation Score (significance at p<0.05 for paired 

differences and p<0.01 for multiple comparisons) 

GSS 

Group p-value 

BH EH BAI EAI Betwee
n all*  

BH vs 
EH** 

BAI vs 
EAI** 

BH vs 
BAI** 

EH vs 
EAI** 

BH vs 
EAI** 

EH vs 
BAI** 

Mean +/- SD 96,9 
+/-5.7 

98.9 
+/- 3.1 

86.1 
+/- 

10.1 

90 +/- 
7.6 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Median (IQR) 100 
(9) 100(0) 87.5 

(9) 
92 

(9.5) 
BH: baseline human model; EH: enhanced human model; BAI: baseline AI model; EAI; enhanced AI model; GSS: 

Global Segmentation Score; SD: standard deviation; IQR: interquartile range 

* Kruskal-Wallis Test 

** Mann-Whitney Test 
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