SUPPLEMENTARY DATA

Supplementary methods

Procedures

All coronary revascularization procedures and related medical therapies were performed according to standard procedural guidelines.^{1,2} A loading dose of aspirin (300 mg) and a P2Y₁₂ inhibitor (clopidogrel 300-600 mg, ticagrelor 180 mg, or prasugrel 60 mg) was administered before percutaneous coronary intervention (PCI) unless the patients had been regularly taking the medications. Anticoagulation during PCI was performed using unfractionated heparin to achieve an activated clotting time of 250-300 seconds. Invasive coronary angiography was performed using a transradial or transfemoral approach according to standard techniques. Diagnostic angiograms were obtained after intracoronary nitrate (100 or 200 µg) administration. All PCI procedures were performed using current standard techniques with second-generation drug-eluting stents or drug-eluting balloons. The choice of a stent vs balloon, stenting technique, use of additional imaging devices such as intravascular ultrasound or optical coherence tomography, or poststent adjunctive balloon inflation was left to the operator's discretion.

With respect to CABG procedures, an off-pump CABG method using bilateral internal thoracic artery grafting is the preferred technique at our institution.³ All operations were performed using a standard median sternotomy approach. Bilateral internal thoracic arteries were prepared using skeletonization techniques with sharp dissection, clipping, and branch ligation. The saphenous vein was harvested from the patient's upper or lower leg with split incisions. Heparinized saline was used to dilate the saphenous vein graft (SVG). The right gastroepiploic artery (GEA) was prepared in situ in a pedicled manner. The right internal thoracic artery (RITA) was anastomosed to the left side of the left internal thoracic artery (LITA) with a continuous running suture to construct a Y composite graft. The LITA was anastomosed to the left anterior descending artery (LAD) and its branches, and then the RITA was anastomosed to the left circumflex artery (LCX). If proximal right coronary artery (RCA) stenosis was greater than 80%, the RITA was initially selected as a graft. If the length of the harvested RITA was not sufficient to reach the

RCA anastomosis, the right GEA was used. If proximal RCA stenosis was less than 80%, aortocoronary bypass was performed using the SVG. The selection of perioperative treatment strategy, including the use of cardiopulmonary bypass, number of grafts used, determination of anastomosis site, and concomitant medical therapy, was left to the operator's preference. A Transonic Flowmeter (Transonic Systems, Ithaca, NY, USA) was used to evaluate the quality of the anastomosis according to measured transit time flow. Table 1 of the supplementary data. Comparison of baseline characteristics between the 2 PCI groups

Variables	PCI-CR (n = 188)	PCI-IR (n = 263)	Р
Demographic factors			
Age, y	67.1±11.2	69.3±11.4	.041
Age > 65 y	124 (66.0)	185 (70.3)	.376
Male sex	155 (82.4)	195 (74.1)	.049
Body mass index, kg/m ²	23.9±3.0	23.5±3.4	.170
Body mass index > $25 kg/m^2$	61 (32.4)	82 (31.2)	.855
Clinical presentation and course			
Acute coronary syndrome	93 (49.7)	132 (50.4)	.968
Acute myocardial infarction	31 (16.5)	60 (22.8)	.126
Number of vessels involved			< .001
2-vessels	117 (62.2)	100 (38.0)	
3-vessels	71 (37.8)	163 (62.0)	
Left main disease	34 (18.1)	46 (17.5)	.970
Use of ECMO	2 (1.1)	5 (2.1)	.727
Left ventricular ejection fraction, %	38.3±8.4	36.8±8.4	.058
LVEF < 35%	53 (28.2)	92 (35.0)	.156
Risk factors and medical history			
Hypertension	120 (63.8)	194 (73.8)	.031
Diabetes mellitus	126 (67.0)	181 (68.8)	.763
Dyslipidemia	58 (30.9)	82 (31.2)	> .999
Current smoker	28 (14.9)	65 (24.7)	.015
Chronic kidney disease	49 (26.1)	65 (24.7)	.830
On dialysis	23 (12.2)	19 (7.2)	.101
History of PCI	50 (26.6)	59 (22.4)	.365
History of CABG	32 (17.0)	22 (8.4)	.008
History of myocardial infarction	53 (28.2)	86 (32.7)	.358
History of stroke	20 (10.6)	28 (10.6)	> .999
Peripheral vascular disease	8 (4.3)	22 (8.4)	.125
Hemoglobin (mg/dL)	12.7 ± 2.3	12.3 ± 2.3	.115
Glomerular filtration rate, mL/min/1.73	64.7 ± 32.8	59.0 ± 29.8	.057
<i>m</i> ²			
Medication at discharge			
<u>Aspirin</u>	168 (89.4)	238 (90.5)	.813
<u>P2Y₁₂ inhibitor</u>	180 (95.7)	255 (97.0)	.668
<u>RAS blockade</u>	115 (61.2)	152 (57.8)	.534
<u>Statin</u>	171 (91.0)	240 (91.3)	> .999

CABG, coronary artery bypass graft; ECMO, extracorporeal membrane oxygenation; LVEF, left ventricular ejection fraction; PCI-CR, percutaneous coronary intervention with complete revascularization; PCI-IR, percutaneous coronary intervention with incomplete revascularization; RAS, renin-angiotensin system.

The data are expressed as are mean ± standard deviation, median [1st interquartile, 3rd interquartile],

or No. (%).

 Table 2 of the supplementary data.
 Clinical outcomes with exclusion of patients with acute myocardial

infarction

PCI vs CABG						
	PCI (n = 360)	CABG (n = 900)	Hazard ratio (95%CI) [*]	Р		
Cardiac death or MI	84 (25.7)	151 (21.3)	1.36 (0.98-1.88)	.067		
Death	121 (34.4)	185 (25.4)	1.43 (1.08-1.89)	.013		
Cardiac death	76 (23.2)	145 (20.5)	1.26 (0.90-1.77)	.178		
MI	19 (6.5)	11 (1.6)	5.27 (2.22-12.52)	< .001		
Stroke	25 (8.5)	53 (7.6)	1.14 (0.65-2.01)	.642		
Heart failure	41 (13.5)	33 (5.3)	2.97 (1.69-5.24)	< .001		
readmission						
Target vessel	26 (9.1)	15 (2.3)	4.04 (1.90-8.62)	< .001		
revascularization						
PCI-CR vs CABG						
	PCI-CR (n = 157)	CABG (n = 900)	Hazard ratio (95%CI) [*]	Р		
Cardiac death or MI	26 (18.5)	151 (21.3)	0.89 (0.54-1.48)	.664		
Death	43 (28.2)	185 (25.4)	1.09 (0.72-1.64)	.690		
Cardiac death	23 (16.3)	145 (20.5)	0.83 (0.49-1.40)	.480		
MI	4 (3.1)	11 (1.6)	2.36 (0.51-10.84)	.270		
Stroke	15 (11.0)	53 (7.6)	1.69 (0.86-3.33)	.127		
Heart failure	20 (14.7)	33 (5.3)	3.70 (1.78-7.69)	< .001		
readmission						
Target vessel	9 (7.2)	15 (2.3)	3.62 (1.37-9.55)	.009		
revascularization						
PCI-IR vs CABG						
	PCI-IR (n = 203)	CABG (n = 900)	Hazard ratio (95%CI) [*]	Р		
Cardiac death or MI	58 (31.1)	151 (21.3)	1.62 (1.13-2.32)	.009		
Death	78 (39.1)	185 (25.4)	1.66 (1.21-2.27)	.002		
Cardiac death	53 (28.4)	145 (20.5)	1.55 (1.07-2.25)	.021		
MI	15 (9.2)	11 (1.6)	7.01 (2.81-17.51)	< .001		
Stroke	10 (6.4)	53 (7.6)	0.78 (0.36-1.69)	.532		
Heart failure	21 (12.6)	33 (5.3)	2.60 (1.34-5.02)	.005		
readmission						
Target vessel	17 (10.7)	15 (2.3)	3.92 (1.65-9.33)	.002		
revascularization						
PCI-CR vs PCI-IR						
	PCI-CR (n = 157)	PCI-IR (n = 203)	Hazard ratio (95%CI) [*]	Р		
Cardiac death or MI	26 (18.5)	58 (31.1)	0.59 (0.36-0.96)	.034		
Death	43 (28.2)	78 (39.1)	0.75 (0.50-1.11)	.148		
Cardiac death	23 (16.3)	53 (28.4)	0.57 (0.34-0.96)	.035		
MI	4 (3.1)	15 (9.2)	0.29 (0.08-1.00)	.050		
Stroke		10 (6 1)		040		
	15 (11.0)	10 (6.4)	2.41 (1.00-5.79)	.049		
Heart failure	20 (14.7)	10 (6.4)	1.03 (0.54-2.00)	.049		

Target vessel	9 (7.2)	17 (10.7)	0.55 (0.24-1.29)	.169
revascularization				

CABG, coronary artery bypass graft; CR, complete revascularization; IR, incomplete revascularization;

MI, myocardial infarction; PCI, percutaneous coronary intervention.

The data are presented as No. (%). Percentages are 5-year Kaplan-Meier estimates.

^{*}Multivariable adjusted analysis was performed with the variables of age > 65 years, male sex, acute coronary syndrome, body mass index > 25kg/m², hypertension, diabetes mellitus, current smoking, LVEF > 35%, chronic kidney disease, history of stroke, history of PCI, atrial fibrillation, significant mitral regurgitation, aspirin, P2Y₁₂ inhibitor, renin-angiotensin system blockade, and statin. Table 3 of the supplementary data. Competing risk analysis for clinical outcomes

PCI vs CABG						
	PCI	CABG	Hazard ratio (95%CI) [*]	Р		
Cardiac death or MI	115 (26.1)	184 (21.6)	1.26 (1.00-1.59)	.055		
Cardiac death	178 (22.9)	101 (21.0)	1.13 (0.89-1.44)	.330		
MI	12 (7.2)	32 (1.4)	5.48 (2.82-10.60)	< .001		
Stroke	64 (8.1)	32 (7.8)	1.03 (0.68-1.57)	.880		
Heart failure readmission	40 (14.4)	58 (5.4)	3.06 (2.04-4.59)	< .001		
Target vessel revascularization	16 (9.3)	37 (2.2)	4.27 (2.40-7.58)	< .001		
PCI-CR vs CABG						
	PCI-CR	CABG	Hazard ratio (95%CI) [*]	Р		
Cardiac death or MI	35 (19.2)	184 (21.6)	0.89 (0.62-1.27)	.510		
Cardiac death	29 (15.9)	101 (21.0)	0.75 (0.51-1.11)	.147		
MI	10 (5.5)	32 (1.4)	4.05 (1.76-9.35)	.001		
Stroke	16 (9.5)	32 (7.8)	1.20 (0.70-2.07)	.506		
Heart failure readmission	24 (13.9)	58 (5.4)	2.93 (1.75-4.91)	< .001		
Target vessel revascularization	15 (9.1)	37 (2.2)	4.10 (2.05-8.19)	< .001		
PCI-IR vs CABG						
	PCI-IR	CABG	Hazard ratio (95%CI) [*]	Р		
Cardiac death or MI	80 (30.8)	184 (21.6)	1.54 (1.18-2.00)	.001		
Cardiac death	72 (27.8)	101 (21.0)	1.42 (1.08-1.87)	.012		
MI	22 (8.5)	32 (1.4)	6.51 (3.22-13.20)	< .001		
Stroke	16 (7.1)	32 (7.8)	0.91 (0.53-1.57)	.731		
Heart failure readmission	34 (14.8)	58 (5.4)	3.13 (1.98-4.97)	< .001		
Target vessel revascularization	22 (9.4)	37 (2.2)	4.39 (2.31-8.33)	< .001		
PCI-CR vs PCI-IR						
	PCI-CR	PCI-IR	Hazard ratio (95%CI) [*]	Р		
Cardiac death or MI	35 (19.2)	80 (30.8)	0.58 (0.39-0.86)	.007		
Cardiac death	29 (15.9)	72 (27.8)	0.53 (0.34-0.81)	.004		
MI	10 (5.5)	22 (8.5)	0.63 (0.30-1.33)	.232		
Stroke	16 (9.5)	16 (7.1)	1.32 (0.66-2.64)	.433		
Heart failure readmission	24 (13.9)	34 (14.8)	0.94 (0.56-1.58)	.820		
Target vessel revascularization	15 (9.1)	22 (9.4)	0.94 (0.48-1.81)	.844		

CABG, coronary artery bypass graft; CR, complete revascularization; IR, incomplete revascularization;

MI, myocardial infarction; PCI, percutaneous coronary intervention

The data are presented as No. (%). Percentages are 5-year Kaplan-Meier estimates.

^{*}Multivariable adjusted analysis was performed with the variables of age > 65 years, male sex, acute

coronary syndrome, body mass index > 25 kg/m², hypertension, diabetes mellitus, current smoking,

left ventricular ejection fraction > 35%, chronic kidney disease, history of stroke, history of PCI, atrial

fibrillation, significant mitral regurgitation, aspirin, $P2Y_{12}$ inhibitor, renin-angiotensin system blockade, and statin.

REFERENCES OF THE SUPPLEMENTARY DATA

1. Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. *EuroIntervention*. 2019;14:1435-1534.

2. Lawton JS, Tamis-Holland JE, Bangalore S, et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. *J Am Coll Cardiol.* 2021. <u>https://doi.org/10.1016/j.jacc.2021.09.005</u>.

3. Choi KH, Song YB, Jeong DS, et al. Differential effects of dual antiplatelet therapy in patients presented with acute coronary syndrome vs stable ischaemic heart disease after coronary artery bypass grafting. *Eur Heart J Cardiovasc Pharmacother*. 2021;7:517-526.