Jo J, et al. Clinical impact of visceral adiposity on long-term mortality in patients undergoing coronary artery bypass grafting. Rev Esp Cardiol. 2024.

SUPPLEMENTARY DATA

Table 1 of the supplementary data.

Standardized mean difference of matched covariates in the original and IPTW-matched population

	T1 vs T2		T1 vs T3		T2 vs T3		
	Original population SMD	Matched population SMD	Original population SMD	Matched population SMD	Original population SMD	Matched population SMD	
Age	.011	.001	.288	<.001	.315	.001	
Sex	.076	.003	.061	.007	.015	.001	
Presentation with AMI	.176	<.001	.158	.017	.018	.003	
Hypertension	.112	.002	.385	.007	.271	<.001	
Diabetes mellitus	.006	.001	.072	.007	.066	.003	
Dyslipidemia	.145	<.001	.185	.003	.040	.005	
Current smoking	.015	.001	.005	.002	.020	.003	
Chronic kidney disease	.114	.001	.097	.002	.017	.001	
Previous stroke	.003	.002	.044	.006	.048	.006	
Previous MI	.010	<.001	.038	.005	.028	.002	
Preoperative LVEF	.219	<.001	.317	.012	.095	.001	
Three-vessel disease	.057	.001	.019	.006	.076	.004	
Off-pump CABG	.110	<.001	.083	.006	.027	.002	

AMI, acute myocardial infarction; CABG, coronary artery bypass grafting; IPTW, inverse probability treatment-weighting; LVEF, left ventricular ejection fraction;

MI, myocardial infarction; SMD, standardized mean difference; T1, low visceral fat area index group; T2, intermediate visceral fat area group; T3, high visceral fat area group.

Jo J, et al. Clinical impact of visceral adiposity on long-term mortality in patients undergoing coronary artery bypass grafting. Rev Esp Cardiol. 2024.

Table 2 of the supplementary data.

Clinical outcomes according to visceral fat area index during a median 8.7-year follow-up after IPTW

	T1 vs T2				T1 vs T3				T2 vs T3			
	Unadjusted HR (95%CI)	P	IPTW-adjusted HR* (95%CI)	P	Unadjusted HR (95%CI)	P	IPTW-adjusted HR* (95%CI)	P	Unadjusted HR (95%CI)	P	IPTW-adjusted HR* (95%CI)	P
All-cause death	1.46 (1.24-1.72)	< .001	1.27 (1.08-1.50)	.004	1.28 (1.09-1.50)	.002	1.32 (1.12-1.56)	.001	0.87 (0.73-1.03)	.116	1.05 (0.89-1.26)	.551
Myocardial infarction	1.00 (0.47-2.13)	> .999	0.94 (0.44-2.01)	.865	1.34 (0.59-3.06)	.486	1.07 (0.41-2.76)	.895	1.31 (0.58-2.96)	.509	1.16 (0.48-2.76)	.746
Any revascularization	1.58 (0.85-2.93)	.144	1.79 (0.96-3.34)	.069	1.04 (0.59-1.80)	.903	0.92 (0.50-1.69)	.786	0.65 (0.35-1.21)	.173	0.56 (0.30-1.07)	.079
Stroke	0.95 (0.61-1.50)	.836	0.96 (0.61-1.53)	.874	1.16 (0.72-1.86)	.553	1.22 (0.74-2.01)	.430	1.21 (0.76-1.92)	.428	1.30 (0.81-2.10)	.273
MACCE	1.37 (1.18-1.60)	< .001	1.24 (1.06-1.45)	.007	1.25 (1.07-1.46)	.004	1.28 (1.09-1.51)	.002	0.91 (0.77-1.07)	.234	1.05 (0.89-1.24)	.531

^{*}The IPTW analyses were conducted using propensity scores. Residual differences in baseline characteristics between the matched cohorts were assessed by calculating the absolute standardized mean differences. These differences were less than 0.1 for all matched covariates (age, sex, presentation with acute myocardial infarction, hypertension, diabetes mellitus, dyslipidemia, current smoking, chronic kidney disease, previous stroke, previous myocardial infarction, preoperative left ventricular ejection fraction, three-vessel disease, and off-pump coronary artery bypass grafting), indicating a good balance.

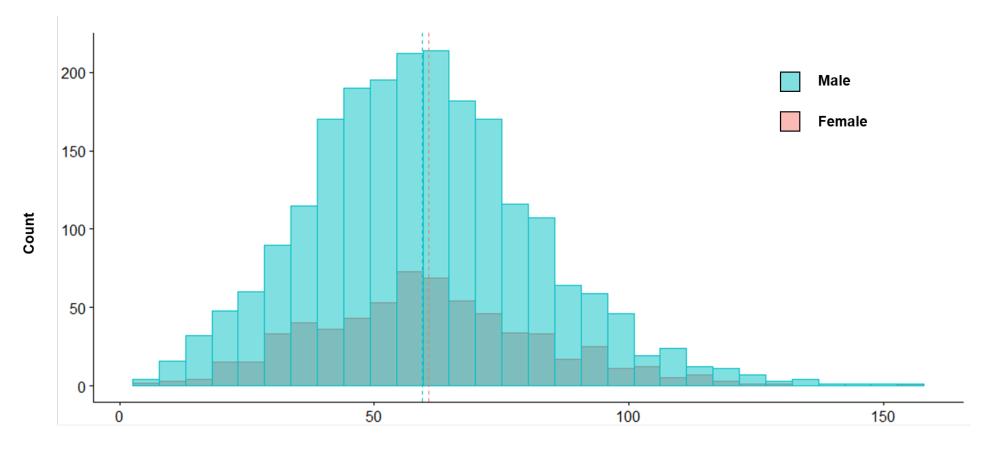
95%CI, 95% confidence interval; HR, hazard ratio; IPTW, inverse probability treatment-weighting; MACCE, major adverse cardiovascular and cerebrovascular event; MI, myocardial infarction; T1, low visceral fat area index group; T2, intermediate visceral fat area group; T3, high visceral fat area group.

Jo J, et al. Clinical impact of visceral adiposity on long-term mortality in patients undergoing coronary artery bypass grafting. Rev Esp Cardiol. 2024.

Table 3 of the supplementary data.

Clinical outcomes according to visceral fat area index during the median 8.7-year follow-up using competing risk event analysis

Low (n = 937)		Intermediate (n = 937)	High (n = 936)	T1 vs T2		T1 vs T3		T2 vs T3		
	(11 – 937)	(11 - 337)	(11 – 930)	Adjusted HR* (95%CI)	Р	Adjusted HR* (95%CI)	Р	Adjusted HR* (95%CI)	Р	
Myocardial infarction	13 (1.4%)	14 (1.6%)	10 (2.9%)	0.91 (0.42-1.98)	.820	1.13 (0.45-2.84)	.800	1.17 (0.51-2.69)	.700	
Any revascularization	25 (2.8%)	17 (1.9%)	25 (2.8%)	1.69 (0.90-3.15)	.100	0.94 (0.50-1.76)	.840	0.59 (0.31-1.14)	.120	
Stroke	36 (5.1%)	40 (4.9%)	32 (5.6%)	0.90 (0.57-1.44)	.660	1.19 (0.71-2.01)	.510	1.33 (0.81-2.16)	.260	

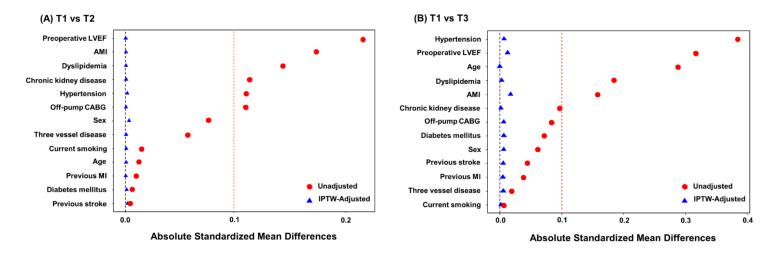

For clinical outcomes, all-cause death was treated as a competing event. Data are expressed as event number (cumulative incidence) at 14 years (median 8.7 years).

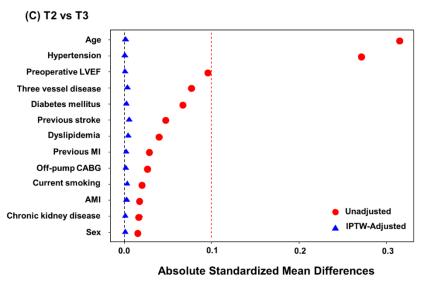
*Adjusted for variables of age, sex, presentation with acute myocardial infarction, hypertension, diabetes mellitus, dyslipidemia, current smoking, chronic kidney disease, previous stroke, previous MI, preoperative left ventricular ejection fraction, three-vessel disease, and off-pump coronary artery bypass grafting.

95%CI, 95% confidence interval; HR, hazard ratio; MI, myocardial infarction; T1, low visceral fat area index group; T2, intermediate visceral fat area group; T3, high visceral fat area group.

Jo J, et al. Clinical impact of visceral adiposity on long-term mortality in patients undergoing coronary artery bypass grafting. Rev Esp Cardiol. 2024.

Figure 1 of the supplementary data. Distribution of the visceral fat area index.


Visceral Fat Area Index(cm²/m²)


Corrección: Visceral fat area index (cm²/m²)

Jo J, et al. Clinical impact of visceral adiposity on long-term mortality in patients undergoing coronary artery bypass grafting. Rev Esp Cardio	ol. 2024.

Jo J, et al. Clinical impact of visceral adiposity on long-term mortality in patients undergoing coronary artery bypass grafting. Rev Esp Cardiol. 2024.

Figure 2 of the supplementary data. Balance after IPTW.

Jo J, et al. Clinical impact of visceral adiposity on long-term mortality in patients undergoing coronary artery bypass grafting. Rev Esp Cardiol. 2024.

Standardized mean differences were less than 0.1 for all matched covariates after IPTW.

AMI, acute myocardial infarction; CABG, coronary artery bypass grafting; IPTW, inverse probability treatment-weighting; LVEF, left ventricular ejection fraction; T1, low visceral fat area index group; T2, intermediate visceral fat area group; T3, high visceral fat area group.

Corrección a la figura: cambiar "three vessel" a "three-vessel"

Cambiar "Absolute Standardized Mean Differences" a "Absolute standardized mean differences"

Cambiar "IPTW-Adjusted" a "IPTW-adjusted" (x 3)