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SUPPLEMENTARY DATA 

Table 1 of the supplementary data. Baseline demographic, clinical and echocardiographic 

characteristics of patients with and without cardiac events and in the derivation cohort 

 All patients 
(n =  558) 

Endpoint (-) 
(n =  343) 

Endpoint (+) 
(n =  215) 

P- 

Age, y 74 ± 13 75 ± 13 73 ± 14 .183 
Male sex 253 (45) 163 (48) 90 (42) .191 
Hypertension 300 (54) 193 (56) 107 (50) .134 
Diabetes mellitus 101 (18) 59 (17) 42 (20) .486 
Chronic obstructive pulmonary disease 70 (13) 36 (11) 34 (16) .065 
Previous myocardial infarction 105 (19) 48 (14) 57 (27)  < .001 
Previous valve surgery 58 (10) 36 (11) 22 (10) .921 
Severe chronic kidney disease 170 (31) 80 (23) 90 (42)  < .001 
NYHA     < .001 

I 126 (23) 97 (28) 29 (13)  
II 264 (47) 170 (50) 94 (44)  
III 153 (27) 71 (21) 82 (38)  
IV 15 (3) 5 (1) 10 (5)  

Atrial fibrillation 302 (54.1) 183 (53.4) 119 (55.3) .645 
Mitral regurgitation≥ 2+ 157 (28.1) 97 (28.3) 60 (27.9) .924 
Right atrial longitudinal strain, % 13 [8-22.2] 15 [9-25] 12 [7-19]  < .001 
Right atrial volume, mL/m² 48 [35-66] 46 [34-62] 53 [36-76] .002 
STR etiology      < .001 

Ventricular  299 (54) 155 (45) 144 (67)  
Atrial 259 (46) 188 (55) 71 (33)  

TAPSE, mm 17 ± 5 18 ± 5 16 ± 4  < .001 
RV end-diastolic volume, mL/m² 87 ± 31 81 ± 26 96 ±  35  < .001 
RV ESV, mL/m² 44 ± 24 39 ± 19 53 ± 28  < .001 
RV SV, mL/m² 42 ± 13 42 ± 12 43 ± 14 .128 
Left ventricular ejection fraction, % 49 ± 15 50 ± 14 48 ± 16 .055 
RV ejection fraction, % 51 ± 11 53 ± 10 47 ± 12  < .001 
Effective RV ejection fraction, % 23 ± 12 26 ± 12 19 ± 11  < .001 
RV FWS, % 18.9 ± 7.0 20.1 ± 7.0 17.1 ± 6.7  < .001 
TAPSE/PASP, mm/mmHg 0.45 ± 0.22 0.48 ± 0.22 0.39 ± 0.19  < .001 
RV FWS/PAP, %/mmHg 0.50 ± 0.27 0.55 ± 0.27 0.42 ± 0.24  < .001 
RV forward SV/ESV 0.56 ± 0.38 0.64 ± 0.38 0.44 ± 0.35  < .001 
PASP, mmHg 43 ± 16 41 ± 14 48  ±  18  < .001 
Regurgitant volume, mL 41 ± 21 37 ± 18 47 ± 23  < 001 
Effective regurgitant orifice area, cm² 0.40 [0.3-

0.6] 
0.40 [0.3-
0.5] 

0.50 [0.3-
0.7] 

 < .001 

Regurgitant fraction, % 55 ± 21 51 ± 20 61 ± 20  < .001 
ESV, end-systolic volume; RV, right ventricular; NYHA, New York Heart Association; PASP, pulmonary 

artery systolic pressure; STR, secondary tricuspid regurgitation; SV, stroke volume; RVFWS, right 

ventricular free-wall longitudinal strain; TAPSE, tricuspid annular plane systolic excursion. 

Data are expressed as No. (%), mean ± standard deviation or median [interquartile range].  
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Table 2 of the supplementary data. Comparison of baseline demographic, clinical and 

echocardiographic characteristics between patients included in the derivation and validation cohorts 

 Derivation 
cohort  
(n =  558) 

Validation 
cohort 
(n =  200) 

P  

Age, y 74 ± 13 73 ± 12 .621 
Male sex 242 (43) 81 (40) .506 
Hypertension  300 (54) 198 (99)  < .001 
Diabetes mellitus  101 (18) 92 (46)  < .001 
Chronic obstructive pulmonary disease  70 (13) 5 (2)  < .001 
Previous myocardial infarction  105 (19) 16 (8)  < .001 
Previous valve surgery  58 (10) 40 (20)  < .001 
Severe chronic kidney disease  170 (31) 48 (24) .085 
NYHA    < .001 

I 126 (23) 6 (3)  
II 264 (47) 119 (59)  
III 153 (27) 56 (28)  
IV 15 (3) 19 (10)  

Atrial fibrillation 302 (54) 175 (87)  < .001 
Mitral regurgitation≥ 2+ 157 (28) 43 (21) .076 
Right atrial longitudinal strain, % 13 [8-22] 6 [4-9]  < .001 
Right atrial volume, mL/m² 48 [35-66] 78 [55-115]  < .001 
STR etiology     < .001 
Ventricular  417 (75) 115 (58)  
Atrial 141 (25) 85 (42)  
TAPSE, mm 17 ± 5 18 ± 6 .092 
RV end-diastolic volume, mL/m² 87 ± 31 116 ± 49  < .001 
RV ESV, mL/m² 44 ± 24 61 ± 31  < .001 
RV SV, mL/m² 42 ± 13 54 ± 21  < .001 
Left ventricular ejection fraction, % 49 ± 15 59 ± 14  < .001 
RV ejection fraction, % 51 ± 11 48 ± 8  < .001 
Effective RV ejection fraction, % 23 ± 12 27 ± 8  < .001 
RV FWS, % 18.9 ± 7.0 17.7 ± 5.6 .013 
TAPSE/PASP, mm/mmHg 0.45 ± 0.22 0.39 ± 0.16  < .001 
RV FWS/PAP, %/mmHg 0.50 ± 0.27 0.39 ± 0.20  < .001 
RV forward SV/ESV 0.56 ± 0.38 0.97 ± 0.29  < .001 
PASP, mmHg 43 ± 16 50 ± 18  < .001 
Regurgitant volume, mL 41 ± 21 39 ± 24 .227 
Effective regurgitant orifice area, cm² 0.4 [0.3-0.6] 0.4 [0.3-0.6] .587 
Regurgitant fraction, % 55 ± 21 43 ± 13  < .001 

ESV, end-systolic volume; RV, right ventricular; NYHA, New York Heart Association; PASP, pulmonary 

artery systolic pressure; STR, secondary tricuspid regurgitation; SV, stroke volume; RVFWS, right 

ventricular free-wall longitudinal strain; TAPSE, tricuspid annular plane systolic excursion. 

Data are expressed as No. (%), mean ± standard deviation or median [interquartile range]. 
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APPENDIX A of the supplementary data. The FUTURE 3D Study methodology 

The inclusion criteria were individuals over 18 years of age with moderate or severe STR. Exclusion 

criteria included primary TR, cardiac implantable electronic device-related TR, previous surgical or 

transcatheter tricuspid valve (TV) interventions, pregnancy, poor apical acoustic windows with 

inadequate echocardiographic images, and lack of follow-up data. This retrospective analysis was 

approved by the Ethics Committee of the Istituto Auxologico Italiano, IRCCS (record #2021_05_18_13, 

approved on May 18, 2021). The investigation conforms to the principles outlined in the Declaration of 

Helsinki. 

 

Clinical and echocardiographic variables  

Clinical, demographic, and laboratory data were recorded at baseline. Clinical comorbidities included 

in the analysis were hypertension, diabetes, coronary artery disease, previous cardiac surgery, chronic 

lung disease (obstructive or restrictive), atrial fibrillation, and chronic kidney disease with 

creatinine  > 2 mg/dL. These conditions were considered present if documented as diagnoses in the 

patient’s medical record and were identified by International Classification of Diseases, Ninth or Tenth 

Revision diagnosis codes prior to the echocardiogram. 

Patients underwent standard Doppler, 2-dimensional and 3DE imaging using Vivid E9/E95 systems (GE 

Healthcare, Chicago, IL), equipped with M5S and 4V/4Vc probes. The images were analyzed offline 

utilizing EchoPAC 204 (GE Healthcare, Chicago, IL) by a single experienced researcher who was blinded 

to the patients’ medical history and follow-up data. Left ventricular (LV) volumes, LV ejection fraction, 

left atrial volumes, and pulmonary artery systolic pressure (PASP) were assessed according to the most 

recent recommendations.1 Conventional echocardiographic parameters of RA and RV size and function 

were measured from the RV-focused apical view.2-4 The effective regurgitant orifice area (EROA) and 

regurgitant volume (RegVol) of the TV were calculated using the proximal isovelocity surface area (PISA) 

method corrected by the angle of tethering of the TV leaflets and the velocity of the regurgitant flow.5,6 
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The regurgitant fraction (RegFr) was calculated as the ratio between the RegVol and the total RV stroke 

volume (SV).7  

The severity of mitral regurgitation and TR was determined according to the latest guidelines.8 3DE 

acquisitions of the RV were obtained from the RV-focused apical view using electrocardiogram gating 

over 4 to 6 consecutive cardiac cycles during a single breath-hold.9 The 4D AutoRVQ software package 

was used to measure RV end-diastolic (EDV) and end-systolic (ESV) volumes, and the RV ejection 

fraction (RVEF).9 The effective RVEF (eRVEF) was calculated as the ratio between the net pulmonary 

flow and RV end-diastolic volume, where net pulmonary flow is obtained by subtracting the STR RegVol 

from the total RV SV.  

RVFWLS and RA longitudinal strain measurements were obtained following current 

recommendations.10 RV-PA coupling was estimated using the following parameters: TAPSE/PASP 

(mm/mmHg), RVFWS/PASP (%/mmHg), and RV forward SV/ESV.11 Patients with STR were classified into 

atrial or ventricular phenotypes according to recent recommendations.12,13  

 

Follow-up and study endpoint 

The primary study endpoint was the occurrence of death from any cause or hospitalization due to 

heart failure (HHF). Information about survival and hospitalization was gathered through regular 

telephone interviews with patients or their families, direct communication with their physicians, and 

reviews of their electronic medical records. HHF events were included if they lasted more than 24 

hours, were confirmed by diagnostic tests, and required specific treatments. Mortality status was 

verified using the Social Security Death Index and death certificates as independent sources. Follow-

up was completed at the time of the first event or the last check-in for patients who did not 

experience any events. Clinical events were adjudicated by physicians who were blinded to the 

patients’ echocardiographic and clinical characteristics.  
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Appendix B of the supplementary data. Introduction to eXtreme Gradient Boosting (XGBoost) 

algorithm 

XGBoost is an integrated machine learning (ML) algorithm based on boosted decision trees, designed 

to predict the value of a dependent variable. Tree-based algorithms are among the most effective ML 

techniques. Using an ensemble strategy, a "strong" predictive model is constructed by combining 

simple trees. Compared to other tree-based ensemble algorithms, XGBoost can handle missing 

values. 

During the training phase, the model builds an additive expansion of the objective function by 

minimizing a loss function. Specifically, the objective function consists of two components: a loss 

function and a regularization term. The XGBoost algorithm expands the loss function to the second-

order Taylor series and incorporates the regularization term into the optimization process. This 

approach helps prevent overfitting and enhances the model’s generalization ability, as follows: 

𝑜𝑜𝑜𝑜𝑜𝑜 =  � 𝐿𝐿(𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖)𝑖𝑖 + ∑ 𝛺𝛺𝑗𝑗 (𝑓𝑓𝑗𝑗)       

with 𝑖𝑖 ∈ 1:𝑁𝑁, and 𝑗𝑗 ∈ 1:𝑚𝑚, where 𝑁𝑁denotes the number of samples, 𝐿𝐿(𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖) denotes the training 

loss function, and 𝛺𝛺 denotes the regularization term: 

𝛺𝛺 �𝑓𝑓𝑗𝑗� =   𝛾𝛾𝛾𝛾 + 1
2
λ𝜔𝜔𝑗𝑗2                        

where 𝑇𝑇 denotes the number of leaves, and 𝜔𝜔𝑗𝑗  denotes the leaf node output in each subdecision tree 

model. The variable 𝛾𝛾 is the 𝐿𝐿1penalty parameters that controls the continued splitting of leaf nodes, 

and λ is the penalty parameter of 𝐿𝐿2, which prevents the leaf nodes from being overweighted. Both 

parameters are constants that control the degree of regularization. Then, second order Taylor 

approximation can be used for optimization, so the specific objective at step 𝑗𝑗 becomes: 

𝑜𝑜𝑜𝑜𝑜𝑜(𝑗𝑗) =  � �𝑔𝑔𝑖𝑖𝑓𝑓𝑗𝑗(𝑥𝑥𝑖𝑖) + 1
2
ℎ𝑖𝑖𝑓𝑓𝑗𝑗2(𝑥𝑥𝑖𝑖)�

𝑖𝑖
+  𝛺𝛺(𝑓𝑓𝑗𝑗)              

where 𝑔𝑔𝑖𝑖 and ℎ𝑖𝑖  are defined as follows: 

𝑔𝑔𝑖𝑖  =   𝜕𝜕𝜕𝜕(𝑦𝑦𝑖𝑖,𝑓𝑓𝑗𝑗−1(𝑥𝑥𝑖𝑖))
𝜕𝜕𝑓𝑓𝑗𝑗−1(𝑥𝑥𝑖𝑖)

 and ℎ𝑖𝑖  =   𝜕𝜕
2𝐿𝐿(𝑦𝑦𝑖𝑖 ,𝑓𝑓𝑗𝑗−1(𝑥𝑥𝑖𝑖))
𝜕𝜕𝑓𝑓2

𝑗𝑗−1(𝑥𝑥𝑖𝑖)
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Appendix C of the supplementary data. Hyperparameter tuning 

The study cohort was randomly split into a training cohort (70%), which was used to train the machine 

learning model and tune its parameters, and a testing cohort (30%), which was used to evaluate the 

developed model on unseen data. To determine the optimal hyperparameters during the training 

process, the model was tuned using the grid search algorithm and optimized by minimizing cross-

entropy loss in a nested 4-fold cross-validation. This approach ensured an unbiased and robust 

performance evaluation. The best-performing configuration during tuning was selected for the final 

model. XGBoost hyperparameters included: 

max_depth: maximum depth of a tree.  

gamma: minimum reduction in loss required to partition a leaf node in the tree 

colsample_bytree: subsample ratio of training data to be used when growing each tree in the ensemble 

learning rate: step size shrinkage used in updates to prevent overfitting. 

The grid search space for “max_depth”, “gamma”, “colsample_bytree” and “learning rate” was set to 

[0, 0.5, 1], [0.8, 1.0], [4, 5, 6] and [0.1, 0.01, 0.05], respectively.  
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Appendix D of the supplementary data. Feature selection 

To ensure the effectiveness of the model, we calculated the linear (Pearson) correlation coefficient 

between each feature and eliminated the features that were too similar (correlation coefficient  > 0.7). 

This approach balances the inclusion of potentially informative variables with the robustness of tree-

based algorithms, such as XGBoost, which effectively handle multicollinearity through internal 

regularization mechanisms. 

Out of a total of 16 parameters, after exclusion of correlated features, 12 features were selected, 

including age, tricuspid annulus plane systolic excursion (TAPSE), right ventricular (RV) end-diastolic 

volume index, RVEF, RV free-wall strain, PASP, EROA, regurgitant fraction, right atrial longitudinal 

strain, right atrial volume index, TAPSE/PASP and forward RV stroke volume/ end-systolic volume. 
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Appendix E of the supplementary data. Definition of statistical parameters for evaluating the XGBoost 

model. 

The statistical parameters were as follows:  

Balanced accuracy  =  1
2
� 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

+ 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

� 

Macro-averaged precision  =  1
𝑛𝑛
∑ ( 𝑇𝑇𝑃𝑃𝑖𝑖

𝑇𝑇𝑃𝑃𝑖𝑖+𝐹𝐹𝑃𝑃𝑖𝑖
)𝑛𝑛

𝑖𝑖 = 1  

Macro-averaged recall  =  1
𝑛𝑛
∑ ( 𝑇𝑇𝑃𝑃𝑖𝑖

𝑇𝑇𝑃𝑃𝑖𝑖+𝐹𝐹𝑁𝑁𝑖𝑖
)𝑛𝑛

𝑖𝑖 = 1  

Macro-averaged F1-score  =  1
𝑛𝑛
∑ (2

𝑇𝑇𝑃𝑃𝑖𝑖
𝑇𝑇𝑃𝑃𝑖𝑖+𝐹𝐹𝑃𝑃𝑖𝑖

 𝑇𝑇𝑃𝑃𝑖𝑖
𝑇𝑇𝑃𝑃𝑖𝑖+𝐹𝐹𝑁𝑁𝑖𝑖

𝑇𝑇𝑃𝑃𝑖𝑖
𝑇𝑇𝑃𝑃𝑖𝑖+𝐹𝐹𝑃𝑃𝑖𝑖

+ 𝑇𝑇𝑃𝑃𝑖𝑖
𝑇𝑇𝑃𝑃𝑖𝑖+𝐹𝐹𝑁𝑁𝑖𝑖

)𝑛𝑛
𝑖𝑖 = 1  

where 𝑇𝑇𝑇𝑇 are true positives, 𝑇𝑇𝑇𝑇 true negatives, 𝐹𝐹𝐹𝐹 false negatives, 𝐹𝐹𝐹𝐹 false positives and 𝑛𝑛 is the 

number of classes.  
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Appendix F of the supplementary data. Explainable AI with SHapley Additive exPlanation (SHAP). 

The SHAP technique is based on the theoretically optimal Shapley values from game theory and 

provides an interpretability method that aligns more closely with human intuition.1 The concept of the 

SHAP value was introduced to explain model predictions, identify the most influential features 

impacting the outcome, and understand how these features contribute to the prediction. The SHAP 

technique calculates each variable’s contribution to the model by using a predicted model for every 

combination of variables S ⊆ F, where F is the set of all possible variables. The SHAP value of a variable 

corresponds to the average measure of its additive feature attribution (marginal contribution), 

computed for all subsets 𝑆𝑆 ⊆ 𝐹𝐹{𝑖𝑖}. 

The formula for the SHAP value is defined as follows: 

∅𝑖𝑖(𝑓𝑓) =   �
|𝑆𝑆|! (|𝐹𝐹|− |𝑆𝑆|− 1)!

|𝐹𝐹|!
𝑆𝑆⊆𝐹𝐹{𝑖𝑖}

[𝑓𝑓(𝑆𝑆 ∪ {𝑖𝑖})−𝑓𝑓(𝑆𝑆)] 

where 𝐹𝐹 is the total number of features. 𝑓𝑓(𝑆𝑆) is the prediction given the subset 𝑆𝑆 and 𝑓𝑓(𝑆𝑆 ∪ {𝑖𝑖}) is the 

prediction given 𝑆𝑆 including feature 𝑖𝑖. 𝑓𝑓(𝑆𝑆 ∪ {𝑖𝑖})− 𝑓𝑓(𝑆𝑆) is the marginal contribution. 

The SHAP technique offers 2 approaches for model explainability: global explainability, which provides 

insights into the overall structure of how a model makes decisions, and local explainability, which 

focuses on understanding how the model arrived at a specific prediction.1  

One advantage of the SHAP technique over earlier perturbation methods is that SHAP values also 

account for interactions between different features.  

 

1- Lundberg SM, Lee SI. A unified approach to interpreting model predictions. Advances in neural 

information processing systems. 2017;30. 

2- Welcome to the shap documentation. https://shap.readthedocs.io/en/latest/ 
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Appendix G of the supplementary data. Software packages 

Statistical and survival analyses were performed in R (version 4.3.2) using the following packages: 

readxl, corrplot, survival, ggplot2, pROC, PredictABEL, FactorMineR, factoextra, dplyr, tibble, logistf, 

lmtest, rms, and survminer.  

The remaining analyses were conducted in Python (version 3.10.12) using the following libraries: 

pandas, numpy, sklearn, XGBoost, matplotlib and shap packages.  
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Figure 1 of the supplementary data. Patient selection flow-chart 
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Figure 2 of the supplementary data. Variable selection and resulting cluster analysis. 

Representation of the candidate variables expressed as squared cosine into 4 main principal 

component analysis dimensions. A high squared cosine indicates a good representation of the variable 

on the principal component. B. correlation matrix with Pearson correlation coefficient of candidate 

variables. The color intensity and circle size are proportional to the correlation coefficients (if P >  .05 

they are left blank). Variables selected for clustering are shown in red.  

 

eRVEF, effective right ventricular ejection fraction; EROA, effective regurgitant orifice area; RALS, right 

atrial longitudinal strain; RAVI, right atrial volume index; RegF, regurgitant fraction; RegV, regurgitant 

volume; RVFWS, right ventricular free-wall strain; PASP, pulmonary artery systolic pressure; RVEDVI, 

right ventricular end-diastolic volume index; RVEF, right ventricular ejection fraction; RVESVI, right 

ventricular end-systolic volume index; fRVSV, forward right ventricular stroke volume; TAPSE, tricuspid 

annulus plane systolic excursion. 
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Figure 3 of the supplementary data. Survival plots for the derivation (left panel) and validation (right 

panel) cohorts.  
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Figure 4 of the supplementary data. Survival plots for the derivation (left panel) and validation (right 

panel) cohorts.  
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Figure 5 of the supplementary data. Density plots for the derivation (left panel) and validation (right 

panel) cohorts. 
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Figure 6 of the supplementary data. Kaplan-Meier plots for the analysis of the event-free survival from 

all-cause death (left panel) and hospitalization for heart failure of the patients of the derivation cohort 

included into the lowest-, intermediate, and highest-risk clusters. 
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Figure 7 of the supplementary data. True table of the derivation and validation cohorts. 
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Figure 8 of the supplementary data. Results of 100-fold Monte-Carlo cross-validation for accuracy, 

precision (top panels), recall and F1-score (bottom panels). Green line  =  mean value; red lines  =  95% 

confidence interval.  
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Figure 9 of the supplementary data. Summary plots combining feature importance with feature effects 

to predict the patient-specific phenogroup. SHAP feature importance assessment for A) low-risk, B) 

middle-risk, C) high-risk phenogroups. Each point on the summary plot is a SHAP value for a feature 

and an instance. The importance of the feature, based on the magnitude of its influence on the model 

output, determines its position on the y-axis, while its SHAP value is shown on the x-axis. The color 

represents the value of the feature value from low (blue) to high (red). 
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