

HEMATOLOGY TRANSFUSION AND CELL THERAPY

VOLUME 47, ISSUE 4, OCTOBER/DECEMBER, 2025

PILAR *** CIÊNCIA

O PILAR CIÊNCIA DA ABHH, REAFIRMA O NOSSO COMPROMISSO COM A MELHORIA DOS CUIDADOS DE SAÚDE E AVANÇOS NO TRATAMENTO DE DOENÇAS HEMATOLÓGICAS.

INICIATIVAS

- Registros
- ClinicalKey
 Consensos e
- Consensos Diretrizes
- Revista científica
- HTCT
 Plataforma de

Plataforma de estudos clínicos

ASSOCIE-SE:

Algumas iniciativas são exclusivas para associados. Associe-se para ter acesso

Associe-se para ter acesso.

@ABHHOFICIAL

WWW.ABHH.ORG.BR

Investir nos Programas de Acreditação AABB/ABHH em Serviços de Hemoterapia e de Terapia Celular é prezar pela qualidade e segurança.

- Padrões internacionais de Acreditação
- Maior qualidade
- Maior segurança
- Desenvolvimento técnico e científico
- Agregar valor aos seus serviços

INFORMAÇÕES

+55 11 99983-8678 acreditacao@abhh.org.br www.abhh.org.br

HEMATOLOGY, TRANSFUSION AND CELL THERAPY

ISSN 2531-1379 print version

ISSN 2531-1387 online version

EDITOR IN CHIE

Eduardo Magalhães Rego, São Paulo, SP

DEPUTY EDITOR

Erich Vinicius de Paula, Campinas, Brazil

ASSOCIATE EDITORS

Alfredo Mendrone Junior São Paulo, Brazil Belinda Pinto Simões Ribeirão Preto, Brazil

Behnaz Bayat Giessen, Germany Carla Luana Dinardo São Paulo, Brazil

Carlos Sérgio Chiattone São Paulo, Brazil

Cármino Antonio de Souza Campinas, Brazil Dante Mário Langhi Junior São Paulo, Brazil

Dimas Tadeu Covas Ribeirão Preto, Brazil Elvira Deolinda Rodrigues Pereira Velloso São Paulo, Brazil

Fabiola Traina Ribeirão Preto, Brazil Helio Moraes de Souza Uberaba, Brazil Irene Lorand-Metze Campinas, Brazil

José Orlando Bordin São Paulo, Brazil

Luis Fernando S. Bouzas Rio de Janeiro, Brazil

Marcelo Pasquini Wisconsin, USA Márcio Nucci Rio de Janeiro, Brazil

Marcos Borato Viana Belo Horizonte, Brazil Marcos de Lima Cleveland, USA

Margareth Castro Ozelo Campinas, Brazil Maria Helena Pitombeira Fortaleza, Brazil Maria Stella Figueiredo São Paulo, Brazil

Marilda de Souza Gonçalves Salvador, Brazil Nelson Hamerschlak São Paulo, Brazil

Nelson Spector Rio de Janeiro, Brazil Nicola Conran Campinas, Brazil

Paulo Sérgio da Silva Santos São Paulo, Brazil Roberto Passetto Falcão Ribeirão Preto, Brazil Rodrigo Tocantins Calado Ribeirão Preto, Brazil

Sara Teresinha Olalla Saad Campinas, Brazil Silvia Maria Meira Magalhães Fortaleza, Brazil

Valder Arruda Philadelphia, USA Vanderson Rocha São Paulo, Brazil

Vania Tietsche de Moraes Hungria São Paulo, Brazil

Editorial Board

Alois Gratwöhl Basel, Switzerland Álvaro Urbano-Ispizua Barcelona, Spain Andrea Bacigalupo Genoa, Italy Ângelo Maiolino Rio de Janeiro, Brazil Antonio Fabron Júnior Marilia, Brazil Christian Gisselbrecht Paris, France Corrado Tarella Turin, Italy Daniel Tabak Rio de Janeiro, Brazil David Gòmez Almaguer Mexico City, Mexico Elbio A. DAmico São Paulo, Brazil Enric Carreras Barcelona, Spain Eugenia Maria Amorim Ubiali - Ribeirão Preto, Brazil Fernando Ferreira Costa, Campinas, Brazil

Frederico Luiz Dulley São Paulo, Brazil
Gino Santini Genoa, Italy
Guillermo Dighiero Montevideo, Uruguay
Guillermo Ruiz-Arguelles Puebla, Mexico
Jesus Fernando San Miguel Salamanca, Spain
João Carlos Pina Saraiva Belém, Brazil
Laércio de Melo Belo Horizonte, Brazil
Lílian Maria Castilho Campinas, Brazil
Linamara Rizzo Batistella São Paulo, Brazil
Lucia Mariano da Rocha Silla Porto Alegre, Brazil
Marcos Antonio Zago Ribeirão Preto, Brazil
Maria de Lourdes L. F. Chauffaile São Paulo, Brazil
Maria do Socorro P. de Oliveira Rio de Janeiro, Brazil

Mario Cazolla Pavia, Italy
Mary Evelyn Flowers Seattle, USA
Nelson Abrahin Fraiji Manaus, Brazil
Nelson J. Chao Durham, USA
Paul M. Ness Baltimore, USA
Paulo César Naoum São José do Rio Preto, Brazil
Raul C. Ribeiro Memphis, USA
Raul Gabus Montevideo, Uruguay
Ricardo Pasquini Curitiba, Brazil
Richard K. Burt Chicago, USA
Sergio Giralt New York, USA
Vânia Tietsche Hungria São Paulo, Brazil
Vicente Odone Filho São Paulo, Brazil

PAST EDITORS

Antonio P. Capanema 1973-1981; Milton A. Ruiz 1981-1990; Carlos S. Chiattone 1991-1994; Milton A. Ruiz 1995-2014; Fernando Ferreira Costa 2015-2022. The Hematology, Blood Transfusion and Cell Therapy succeeded the Revista Brasileira de Hematologia e Hemoterapia (Brazilian Journal of Hematology and Hemotherapy), ISSN 1516-8484, which succeeded the Boletim da Sociedade Brasileira de Hematologia e Hemoterapia (Bulletin of the Brazilian Society of Hematology and Hemotherapy) ISSN 0102-7662, which was published from 1973 to 1998 with 179 issues in 20 volumes.

ABHH

Rua Diogo de Faria, 775/conjunto 133 04037-002 Vila Clementino - São Paulo/SP - Brazil (11) 2369-7767 / (11) 2338-6764 (WhatsApp) E-mail: abhh@abhh.org.br www.abhh.org.br

HTCT

Internal Editorial Committee
Executive Secretary: Luciana de Souza
secretaria@rbhh.org | www.htct.com.br

The Hematology, Transfusion and Cell Therapy is the offi cial publication of the Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular (ABHH), the Associazione Italo-Brasiliana di Ematologia (AIBE), Eurasian Hematology Oncology Group (EHOG), and the Sociedade Brasileira de Oncologia Pediátrica (SOBOPE), published by Elsevier Editora Ltda. The journal is indexed to the Literatura Latino-Americana e do Caribe em Ciências da Saúde (Lilacs), SciELO Brazil, PubMed/PMC, Web of Science (ESCI), Extramed and Scopus. It is distributed for free to regional libraries and Medical, Pharmacy and Biochemistry Schools in Brazil and sister societies in South, Central and North America and Europe. © 2023 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier Editora Ltda. All rights reserved.

All rights reserved and protected by law 9.610 - 19/02/98. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from ABHH and the Publisher.

Editorial production by Elsevier España, SLU Avinguda Josep Tarradellas, 20-30, 1er piso 08029, Barcelona DL: B-26732-2017

ELSEVIER

No responsibility is assumed by Elsevier for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made. Although all advertising material is expected to conform to ethical (medical) standards, inclusion in this publication does not constitute a guarantee or endorsement of the quality or value of such product or of the claims made of it by its manufacturer.

Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular

Board Of Directors 2024-2025

Executive Director Angelo Maiolino Deputy Executive Director Eduardo Magalhães Rego Administrative Directorate Glaciano Nogueira Ribeiro,

Silvia Maria Meira Magalhães

Financial Directorate Celso Arrais Rodrigues da Silva, Leny Nascimento da Motta Passos

Scientific Directorate Carmino Antonio de Souza,

Dimas Tadeu Covas

Communications Directorate Renato Sampaio Tavares,

Vania T. de Moraes Hungria

Professional Defense Directorate Edvan de Queiroz Crusoé, José Francisco Comenalli Marques Jr.

Institutional Relations Directorate Carlos Sérgio Chiattone, Dante Langhi Junior Social Actions Directorate Jorge Vaz Pinto Neto, Violete Petitto Laforga

Scientific Director Emeritus Roberto Passetto Falcão Director of Learning and Counseling José Orlando Bordin

President of the Deliberative Council José Eduardo Bernardes

General Manager Aline Achê

Deliberative Committee

Elected 2022-2025

Thiago Xavier Carneiro Aderson da Silva Araujo Silvia Maria Meira Magalhães Renato Sampaio Tavares Karina Correia Barcelos

Elected 2024-2027

Leny Nascimento da Motta Passos Edvan de Queiroz Crusoé Jorge Vaz Pinto Neto Gustavo Henrique Silveira Marcos Daniel de Deus Santos Amanda Pifano Soares Ferreira

João Paulo de Oliveira Guimarães

Angelo Maiolino Carla Luana Dinardo Eduardo Magalhães Rego Monika Conchon

Glaciano Nogueira Ribeiro Adriana Alves Scheliga Clarisse Lopes de Casto Lobo Roberto José Pessoa de Magalhães Celso Arrais Rodrigues da Silva José Eduardo Bernardes

Renato Luiz Guerino Cunha Rodolfo Delfini Cançado Talita Maira Bueno da Silveira Vanderson Rocha Vaneuza Araujo Moreira Funke

José Francisco Comenalli Marques Júnior Vânia Tietsche de Moraes Hungria Violete Petitto Laforga

Lifelong Deliberative Committee

Carlos Sergio Chiattone Carmino Antonio de Souza Dante Mário Langhi Júnior Dimas Tadeu Covas Eurípedes Ferreira Fernando Ferreira Costa

Hélio Moraes de Souza Hélio Ramos João Carlos Pina Saraiva José Orlando Bordin

José Kerbauy Marco Antonio Zago Milton Artur Ruiz Nelson Ibrahim Fraiji Nelson Hamerschlak Nelson Spector Orion de Bastos Ricardo Pasquini

Roberto Passetto Falcão Romeu Ibrahim de Carvalho Sara Teresinha Olalla Saad Therezinha Verrastro de Almeida Ubiratan Ouvinha Peres

Past Presidents of

Sociedade Brasileira de Hematologia e Hemoterapia

1950 Walter Oswaldo Cruz 1951 Michel Abujamra 1954 Darcy Lima 1955 José Candido C. Villela 1957 Joaquim M. Barreto 1959 Oswaldo Kessler Ludwing 1961 Walter Hupsel 1963 Rui Faria

1965 Orion Bastos 1967 Ubiratan Ouvinha Peres 1970 Oswaldo Mellone 1973 Pedro Clóvis Junqueira 1975 Pedro Clóvis Junqueira 1977 Maria Nazareth Petrucelli 1979 Celso Carlos de C. Guerra 1981 Jacob Rosenblit

1983 Luiz Gastão M. Rosenfeld 1985 Augusto Luiz Gonzaga 1987 Helio Ramos 1988 Milton Artur Ruiz 1990 Nelson Hamerschlak 1992 Eurípedes Ferreira 1994 João Carlos Pina Saraiva 1996 João Pedro E. M. Pereira

1998 Celso Carlos de C. Guerra 2000 Dante Mário Langhi Junior 2002 Dante Mário Langhi Junior 2004 Carlos Sérgio Chiattone 2006 Carlos Sérgio Chiattone 2008 Carlos Sérgio Chiattone

Past Presidents of Colégio Brasileiro de Hematologia

1965 Hildebrando M. Marinho 1967 Michel Abujamra 1969 Romeu Ibrahim de Carvalho 1971 Paulo Barbosa da Costa

1973 Romildo Lins 1975 Renato Rego Failance 1977 Dilson José Fernandes 1981 José Kerbauy

1985 Eurico Coelho 1989 Romeu Ibrahim de Carvalho 1993 José Kerbauy 1997 Roberto Passetto Falcão

2005 José Orlando Bordin

Past Presidents of

Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular

2009 Carlos Sérgio Chiattone José Orlando Bordin

2010-2013: Carmino Antonio

2014-2017: Dimas Tadeu Covas 2018-2021: Dante Langhi Júnior

Associazione Italo-Brasiliana di Ematologia

Board of Directors

President Carlos S. Chiattone (Brazil)
Vice-President Stefano Luminari
Scientific Director – Brazil Carmino Antonio de Souza
Treasurer – Brazil Natalia Zing

Board of Advisors - Brazil

Eduardo Magalhães Rego, Eliana C. M. Miranda, Guilherme Duffl es, Irene de Almeida Biasoli, Marcia Torresan Delamain, Milton Artur Ruiz, Sergio A.B. Brasil, Thais Fischer Honorary Presidents Gino Santini and Angelo Maiolino and Ricardo Pasquini Scientific Director — Italy Maurizio Martelli Treasurer — Italy Luca Arcaini

Board of Advisors - Italy

Angelo Michelle Carella, Gian Luca Gaidano, Ignazio Majolino, Maurizio Martelli, Robin Foà, Teodoro Chisesi

Associazione Italo-Brasiliana di Ematologia

Viale Benedetto XV 16100 - Genoa GE Italy

Eurasian Hematology Oncology Group

Board of Directors

President Giuseppe Saglio Vice-President Birol Guvenc General Secretary ehmus Ertop Member Ahmad Ibrahim, Lebanonn Member Burhan Ferhanoglu, Turkiye Member Carmino de Souza, Brazil Member Claudio Cerchione, Italy Member Jean FranÓois Rossi, France Member Moshe Mittelman, Israel Member Tariq Mughal, USA Member Vera Donnenberg, USA

Eurasian Hematology Oncology Group

www.ehog.net - sekreterlik@hematoloji.org.tr Yurt Mahallesi Kurttepe Cad. 71517 Sokak No.2 Sabahattin Akgün Apt. Kat.1 Daire.1 Çukurova - Adana Phone: 00 90 555 881 01 99

Sociedade Brasileira de Oncologia Pediátrica

Board of Directors - 2025-2026

President Mariana Bohns Michalowski
1st Vice-President Neviçolino Pereira Carvalho Filho
1st Secretary Pablo Santiago
1st Treasurer Patrick Rezende Godinho

2nd Vice-President Flávia Delgado Martins
 2nd Secretary Annemeri Livinalli
 2nd Treasurer Maristella Bergamo Francisco dos Reis

Members of Advisory Board

Andrea Maria Capellano, Elione Soares de Albuquerque, Elvis Terci Valera, Simone dos Santos Aguiar, Valéria Pereira Paiva

Sociedade Brasileira de Oncologia Pediátrica

www.sobope.org.br - sobope@uol.com.br / sobope@sobope.org.br 94/53 04077-020 São Paulo-SP Phone: 55 11 5052-7537

HEMATOLOGY, TRANSFUSION AND CELL THERAPY

www.htct.com.br

Volume 47 • Number 4 • October/December 2025

CONTENTS

Original Articles

~ 8	
Concurrent intravenous immunoglobulin and platelet transfusion for refractory alloimmune thrombocytopenia in patients undergoing allogeneic hematopoietic stem cell transplantation Moazzam Shahzad, Muhammad Kashif Amin, Maggie Nelson, Abhinav Vyas, Joe S. Al-Ramahi, Nausheen Ahmed, Rajat Bansal, Haitham Abdelhakim, Leyla Shune, Al-Ola Abdallah, Anurag K. Singh, Sunil H. Abhyankar, Joseph P. McGuirk and Muhammad Umair Mushtaq	61
Post-thaw dimethyl sulfoxide reduction in autologous peripheral blood progenitor cell suspensions Miroslava Jandová, Pavel Měřička, Jiří Gregor, Miriam Lánská, Aleš Bezrouk, Dana Čížková and Jakub Radocha	65
Updating the Brazilian clinical practice guidelines for sickle cell disease: Recommendations and development process Ludmila Peres Gargano, Mariana Millan Fachi, Layssa Andrade Oliveira, Clarisse Lobo, Katharina Nelly Tobos Melnikoff, Selma Soriano, Marta da Cunha Lobo Souto Maior, Meline Rossetto Kron-Rodrigues, Dalila Fernandes Gomes, Haliton Alves Oliveira Junior and Rosa Camila Lucchetta	64
Overall survival in multiple myeloma in Brazil: A cohort of 16 years Deborah Marta do Santos Oliveira, Isabela Cristina Menezes de Freitas, Wallace Mateus Prata, Isabella Zuppo Laper, Pâmela Santos Azevedo, Adriano de Paula Sabino, Marisa Yurico Itonaga, Carmino Antonio de Souza, Mariângela Leal Cherchiglia, Juliana Alvares Teodoro, Francisco de Assis Acurcio and Augusto Afonso Guerra Junior	62
Risk factors associated with the use of red blood cells in elective cardiac surgeries: A patient blood management (PBM) view Tainá Miotto de Souza, Cláudio Lucas Miranda, Andrezza Belluomini Castro and Patrícia Carvalho Garcia-Bonichini	87
Haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide in the public Chilean national health system: A single center study Barbara Puga, Francisca Bass, Javiera Molina, Rafael Benavente, Alejandro Andrade, Alejandro Majlis, María Elena Cabrera and Mi Kwon	82
Experience with second allogeneic hematopoietic stem cell transplantation in Chilean patients: A single-center study Yorman Flores, Javier Díaz, Patricio Rojas, José Salinas, Catherine Gutiérrez, Marcela Vidal, Verónica Jara, Elizabeth Rivera, María José García, Vicente Sandoval, Felipe Palacios, Maximiliano Vergara, Mauricio Ocqueteau and Mauricio Sarmiento	80
Coagulation factor stability and sterility of thawed fresh frozen plasma stored at 2-6 ° C for five days: Towards optimizing utilization Ruchika Bhartia, Paramjit Kaur, Kshitija Mittal, Anita Tahlan, Varsha Gupta, Ravneet Kaur and Gagandeep Kaur	88

Correlation of serum interleukin-8 with disease severity in aplastic anemia Shahla'a Fadhil Sabir, Huda Ibraheem Abd AL-Lateef and Naam Ali Hamza	103989
Immunological consequences of past transfusions in kidney transplant candidates: A focus on anti-HLA antibody formation Tamara Perić and Svetlana Vojvodić	103990
Review Articles	
COVID-19 Microangiopathy: Insights into plasma exchange as a therapeutic strategy Yigit Baykara, Kaan Sevgi and Yamac Akgun	103963
Case Reports	
An enigmatic tale of macrophages in bone marrow causing inflammation of the brain: A case report on CNS HLH Ivy E. Verriet, Jessica Liu, Adrienne Fulford and Uday Deotare	103981
Daratumumab-EPOCH for transformed anaplastic multiple myeloma Espen Stormorken and Anders Erik Astrup Dahm	
Letters to the Editor	
The battle against pediatric retinoblastoma: insights from 2024 medical literature Yoshiyasu Takefuji	103839
Electroacupuncture as a tool to stimulate bone marrow megakaryocytes in mice: A pilot study Luiza P.R. dos Santos Mariani, Rita M.V.M. Rocha, Lidiane M.B. Leite, Alexandra C. Senegaglia and Pedro V. Michelotto	103966
The tower of babel in hematology: The World Health Organization and International Consensus Classification systems Daniel Mazza Matos and Eduardo Magalhaes Rego	
Regarding "Challenges in diagnosing thrombotic thrombocytopenic purpura" Cilomar Martins de Oliveira Filho and Brian J. Carney	
Fulminant hepatitis secondary to nivolumab in a patient with Hodgkin's Lymphoma after complete remission Ana Júlia Negrelli dos Santos, Arthur Gomes Oliveira Braga and Talita Maira Bueno da Silveira	103983
Images in Clinical Hematology	
Howell-Jolly-like inclusions in granulocytes of a liver transplant recipient Verónica Roldán Galiacho, Sara Hormaza de Jauregui and Lourdes Elicegui Fernández	103978
VEXAS syndrome: more than just vacuoles Marco P. Barros Pinto	103984

HEMATOLOGY, TRANSFUSION AND CELL THERAPY

www.htct.com.br

Original article

Concurrent intravenous immunoglobulin and platelet transfusion for refractory alloimmune thrombocytopenia in patients undergoing allogeneic hematopoietic stem cell transplantation

Moazzam Shahzad ^{a,b,c}, Muhammad Kashif Amin ^{a,c}, Maggie Nelson ^{a,c}, Abhinav Vyas ^{a,c}, Joe S. Al-Ramahi ^{a,c}, Nausheen Ahmed ^{a,c}, Rajat Bansal ^{a,c}, Haitham Abdelhakim ^{a,c}, Leyla Shune ^{a,c}, Al-Ola Abdallah ^{a,c}, Anurag K. Singh ^{a,c}, Sunil H. Abhyankar ^{a,c}, Joseph P. McGuirk ^{a,c}, Muhammad Umair Mushtag ^{a,c},*

ARTICLE INFO

Article history:
Received 26 May 2024
Accepted 15 January 2025
Available online 9 August 2025

Keywords:
Intravenous immunoglobulin
Platelet transfusion
Refractory alloimmune
thrombocytopenia
Allogeneic hematopoietic stem cell
transplantation

ABSTRACT

Background: Severe refractory alloimmune thrombocytopenia is a challenging and life-threatening complication in patients with hematologic disorders who are undergoing allogeneic hematopoietic stem cell transplantation. This study aimed to investigate the utility of continuous intravenous immunoglobulin and platelet transfusions as a therapeutic approach for alloimmune thrombocytopenia in patients undergoing allogeneic transplants. Methods: A single-center retrospective analysis was conducted of ten adult allogeneic transplant patients hospitalized with transfusion-refractory alloimmune thrombocytopenia. Intravenous immunoglobulin (2 g/kg) was administered as a slow continuous infusion over 48 h along with a continuous apheresis platelet infusion (one apheresis unit over eight hours). Clinical response was defined as the resolution of bleeding or patients being able to undergo the required procedure without bleeding complications.

Results: The median time after the transplant was 27.5 (range: 7–299) days. Myeloablative and reduced-intensity conditioning were performed in 5 (50 %) and 5 (50 %) patients, respectively. The median platelet count at the time of infusion was $4.5 \times 10^9/L$. All patients were able to achieve clinical response with the median maximum platelet count within ten days of the infusion being $41.0 \times 10^9/L$. The median time to best response was three days with a median platelet count of $27.0 \times 10^9/L$.

^a Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA

^b H Lee Moffitt Cancer Center, Tampa, FL, USA

^c Mikael Rayaan Foundation Global Transplantation and Cellular Therapy Consortium, Kansas City, KS, USA

^{*} Corresponding author at: Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Suite 210, MS 5003, Westwood 66205, KS, USA.

E-mail address: mmushtaq@kumc.edu (M.U. Mushtaq).

Conclusions: Continuous intravenous immunoglobulin and platelet infusions over 48 h may be able to overcome life-threatening refractory alloimmune thrombocytopenia in transplant patients and may provide a bridging measure until platelet engraftment or for life-threatening hemorrhage or invasive procedures with high bleeding risk.

© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an established option for treating various malignant and non-malignant hematopoietic conditions [1]. Known complications of allo-HSCT include infections, graft failure or rejection, graft-versus-host disease (GvHD), and cytopenias [1,2]. Immune-mediated cytopenias following allo-HSCT probably result from immune dysregulation needing multimodal treatment approaches. Specifically, severe transplantmediated immune thrombocytopenia (ITP), also known as alloimmune thrombocytopenia (AITP), presents as a frequent complication following allo-HSCT [3]. ITP is characterized by a persistent platelet count of less than 100 \times 10 $^{9}/L$ and an increased risk of bleeding [4]. ITP is a general term that includes conditions where the underlying etiology may involve autoimmunity, such as in idiopathic ITP, wherein autoantibodies target platelets. However, AITP is caused explicitly by alloimmunization, where the immune system develops antibodies against transfused or transplanted donor platelets, leading to accelerated destruction or inefficient megakaryocyte production [3,5]. Allo-HSCT recipients with AITP often show no response to random donor platelet transfusions and limited response to HLA (human leukocyte antigen)-matched platelets [6]. Platelet refractoriness, a poor response to platelet transfusions resulting in lower posttransfusion count increments, is a concern in immune-mediated thrombocytopenia [7]. So, severe refractory thrombocytopenia due to alloimmunization remains a life-threatening complication of hematologic disorders requiring substantial platelet transfusions.

Management of ITP involves various options, including corticosteroids, splenectomy, platelet transfusions, thrombopoietin receptor agonists such as eltrombopag and romiplostim, or immunomodulatory therapies such as immunosuppressive agents (e.g., Rituximab), intravenous anti-D, and intravenous immunoglobulin (IVIG) [8-10]. Clinical management, particularly in severe thrombocytopenia cases refractory to platelet transfusion, often overlaps with idiopathic thrombocytopenia and AITP. Intravenous immunoglobulin (IVIG) is used in both contexts to modulate the immune response and temporarily increase platelet counts by mechanisms such as Fc receptor blockade and reduction of platelet destruction [7]. Studies have shown that IVIG can be administered when a more rapid increase in platelet count is necessary, especially during active bleeding or in preparation for an invasive or life-saving procedure [11-13]. When first-line corticosteroid therapy is insufficient or contraindicated, IVIG combined with concomitant platelet transfusion can effectively increase platelet counts in immune-mediated thrombocytopenia [13]. There are limited reports in the literature regarding the concomitant use of platelet transfusion and IVIG infusion investigated in alloimmunized HSCT patients [14]. In this study, the clinical outcomes of IVIG with concurrent platelet transfusion was assessed as a therapeutic approach for AITP for patients undergoing allo-HSCT.

Methods

A single-center retrospective analysis was conducted of all adult patients who had undergone allo-HSCT and had transfusion-refractory thrombocytopenia presumed to be secondary to AITP between April 2021 and August 2023. This study was approved by the University of Kansas Medical Center institutional review board, and all patients consented to receive blood products before receiving IVIG. Data were collected through a retrospective review of electronic medical records. Platelet refractoriness was defined as a corrected count increment (CCI) of ≤7500 one-hour after two consecutive platelet transfusions. Inclusion criteria included adult patients greater than 18 years old with presumed AITP and the need for urgent concurrent IVIG and continuous platelet transfusion for active bleeding or the requirement of a procedure. IVIG (2 g/kg) was given as a slow continuous infusion over 48 h with concomitant apheresis platelet infusion (one apheresis unit over eight hours). The platelet antibody screen was performed using Solid Phase Immune Adherence Assay. Platelet levels were checked one hour after the completion of each transfusion. Clinical response was identified as the resolution of bleeding or the ability of patients to undergo their procedure without bleeding complications. Data analysis was conducted using Microsoft Excel and SPSS. This study aimed to evaluate the effectiveness of IVIG with concurrent platelet transfusion as a treatment for AITP in patients undergoing allo-HSCT.

Results

This study included ten adult patients with transfusion-refractory AITP with a median age of 56 (range: 23.0-66.1) years. Five of the patients (50 %) were males. The median time after the transplant was 27.5 (range: 7-299) days. The primary hematologic malignancies were acute myeloid leukemia (n=3; 30 %), myelodysplastic syndrome (n=6; 60 %), and chronic neutrophilic leukemia (n=1; 10 %). Myeloablative and reduced-intensity conditioning were used in five (50 %) patients each. The indication for an urgent increase in platelets included vaginal bleeding (n=1; 10 %), epistaxis (n=2;

20 %), intravitreal hemorrhage (n = 2; 20 %), melena (n = 1; 10 %), blood loss anemia of unknown origin (n = 1; 10 %), and the need of interventional radiology guided procedures (n = 3; 30 %). All patients in this analysis were hospitalized, and seven had sepsis requiring broad-spectrum antibiotics. Eight patients (80 %) had positive antiplatelet antibodies. Reasons for hospitalization included GvHD (n = 1; 14 %), neutropenic fever or infection (n = 5; 71 %), or active hemorrhage (n = 5; 71 %). The median platelet count at IVIG/platelet infusion was 4.5×10^9 /L. The baseline characteristics and treatment response with IVIG are shown in Table 1. All patients had resolution of their hemorrhage or were able to achieve a platelet response high enough to receive their procedures without bleeding complications. No adverse events were observed from IVIG infusions in all ten patients. The median time to best response was three days with a median platelet count of 27.0×10^9 /L (Figure 1). The individual responses to IVIG infusion are shown in Figure 2.

Discussion

Thrombocytopenia in the context of allo-HSCT is an effect of conditioning regimens and presents a multifaceted challenge with significant clinical implications. Its mechanism is usually multifactorial, underscoring the importance of ongoing research in elucidating and addressing its diverse contributors. Proposed causes of thrombocytopenia include prolonged isolated thrombocytopenia, secondary failure of platelet recovery, and poor graft function [15]. Prolonged isolated thrombocytopenia is characterized by persistently low platelet counts after allo-HSCT ($<20 \times 10^9/L$) with normal counts in other cell lineages for >90 days. It is seen in approximately 5 -20 % of patients who undergo allo-HSCT [15,16]. Its mechanisms remain elusive, potentially involving platelet destruction, ITP-related complications, and/or alterations in the bone marrow microenvironment [17]. Secondary failure of platelet recovery affects approximately 20 % of patients and carries an elevated risk of mortality influenced by factors such as GvHD prophylaxis, donor selection, organ dysfunction, and treatment strategies. Recent advances in transplantation and cytomegalovirus management have altered the incidence and risk factors for secondary failure of platelet recovery [18,19]. GvHD may contribute to reduced platelet production and increased consumption [18]. Poor graft function also presents as persistent cytopenia after allo-HSCT, with a complex etiology encompassing pre-transplant, peri-transplant, and post-transplant factors that create an inflammatory and immune microenvironment [15,19]. Patients with poor graft function experience poorer survival outcomes influenced by factors like the graft cell dose, ferritin levels, and splenomegaly. These conditions collectively underline the intricate nature of thrombocytopenia in stem cell transplantation, emphasizing the ongoing need for research to enhance patient care and outcomes.

This complexity is further highlighted by the persistence of thrombocytopenia even with routine platelet transfusions. In a comprehensive study involving 50 allo-HSCT patients with and without prolonged thrombocytopenia, 42 patients with idiopathic thrombocytopenic purpura, and 22 healthy

individuals, the findings revealed that several factors, including the index for plasma glycocalin normalized for individual platelet count, plasma thrombopoietin levels, and circulating B cells producing anti-GPIIb-IIIa antibodies, were notably higher in patients after allo-HSCT [20]. Furthermore, the study by Leytin et al. in a murine model shows IVIG may increase the platelet count in animals that have antibodies for the GPIIb-IIIa receptor, which suggests that further studies should be carried out to investigate if this is a contributing factor in a human model [21].

While the concurrent use of IVIG and platelet administration was first documented in 1984 for leukemic patients resistant to standard platelet transfusions, Baumann et al. were the first to report on using this combination for ITP [22]. The study included six patients and established the effectiveness of concurrent IVIG and platelet administration. A recent retrospective review of 40 patients revealed that the simultaneous use of IVIG and platelets was safe and effective [13]. The combination therapy was observed to increase platelet count and effectively control bleeding symptoms rapidly. This result offers a promising insight that could aid in developing more effective treatment options for patients suffering from similar conditions. A case series by Ancevski et al. demonstrated that concurrent IVIG infusion and continuous platelet transfusion temporarily increased platelet counts in patients with AITP and bleeding complications [14]. Their findings closely align with our study, where a similar treatment stabilized platelet counts in refractory AITP patients. While earlier reports focused on using this approach in ITP, the study by Ancevski et al. provides direct insight into AITP management, highlighting its effectiveness in modulating immune responses and controlling bleeding. This supports the relevance of using IVIG and platelet transfusions in post-transplant patients with transfusion-refractory thrombocytopenia.

The few studies that researched the concurrent use of IVIG and platelet transfusion have variations in their definitions of a platelet response, patient populations, and comorbidities. These reports studied the use in ITP in adult and pediatric populations [13,22–24]. Bierling et al. reported platelet counts of $>50 \times 10^9$ /L within a few days [23]. The findings of Spahr et al. demonstrate that average platelets increased to $55 \times 10^9/L$ after 24 h and peaked at 69×10^9 /L 48 h after treatment [13]. Most studies did not report clinical outcomes, such as controlling life-threatening bleeding or undergoing a procedure without bleeding complications. However, the study of Spahr et al. reported that all patients could achieve this clinical response in an ITP setting; the present study did not demonstrate such a high platelet count, likely due to a more significant challenge to achieve a response in the setting of AITP. Additionally, these studies do not report whether there is resolution of their life-threatening bleeding.

Of note, two patients in the current study (ID-06 and ID-08) did not demonstrate positive anti-platelet test results. However, they were still managed as refractory AITP as immune reconstitution following allo-HSCT is often delayed, and anti-body testing is unreliable due to B-cell aplasia causing impaired antibody production [2]. The positive response after continuous platelet transfusion and concurrent IVIG infusion supports this assumption. We also did not have data on the degree of alloimmunization using methods like the Panel

Variable					Patient ID	ID				
	ID-01	ID-02	ID-03	ID-04	ID-05	1D-06	ID-07	ID-08	ID-09	ID-10
Age (years)/Sex	28/F	M/65	52/M	64/F	52/F	23/M	47/F	M/99	64/M	61/M
Days between transplant and IVIG	∞	11	299	12	7	149	129	17	40	38
Primary diagnosis	AML	MDS	AML	MDS	AML	AA + MDS	MDS	MDS	MDS	CNL
Type of Allogenic transplant	MUD	MSD	MSD	MUD	MSD	MUD	MUD	MUD	Haplo	Haplo
Conditioning type	MAC	MAC	MAC	RIC	MAC	RIC	MAC	RIC	RIC	RIC
Conditioning regimen	Cy/Bu	Cy/Bu	Cy/Bu	Bu/Flu	Cy/Bu	Cy/Flu/TBI	Cy/Bu	Cy/Flu/Mel	Flu/Mel/TBI	Bu/Flu/Cy
Graft source	BM	PSC	PSC	PSC	PSC	BM	BM	PSC	PSC	PSC
Indication of urgent need of	Vaginal bleeding	Epistaxis	Ommaya reser-	Trifusion cathe-	Intravitreal	Intravitreal	Epistaxis	Melena	Blood loss	Lumbar
platelet increase			voir placement	ter removal	hemorrhage	hemorrhage			anemia	Puncture
Platelet antibody positive?	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Yes
Platelet count at start of IVIG	5	3	17	23	8	6	8	4	7	19
infusion (x 10^9 /L)										
Days between IVIG and platelet > $10 \times 10^9 / L$	2	\vdash	0	8	\leftarrow	—	m	T	—	0
Days between IVIG and plate-	2	2	₽	13	16	2	NA	9	2	3
Davs between IVIG and plate-	9	2	2	15	20	112	N.	NA	NA	Y Z
$\det 50 \times 10^9/L$										
Maximum platelet count	52	55	116	19	16	42	27	40	30	43
within 10 days										
Maximum platelet count	87	55	116	194	54	42	27	40	30	43
HLA antibodies	Negative	Positive	NA	NA	NA	Negative	Positive	Positive	Negative	Positive

IVIG: Intravenous immunoglobulin infusion; F: Female; M.: Male; AML: Acute myeloid leukemia; MDS: Myelodysplastic syndrome; AA: Aplastic anemia; CNL: Chronic neutrophilic leukemia; MUD: Matched unrelated donor; MSD: Matched sibling donor; Haplo: haploidentical transplant; Cy: Cyclophosphamide; Bu: Busulfan; Flu: Fludarabine; TBI: Total body irradiation; BM: Bone marrow; PSC: Peripheral stem cell; IVIG: Intravenous immunoglobulin; HLA: human leukocyte antigen; NA: Not available.

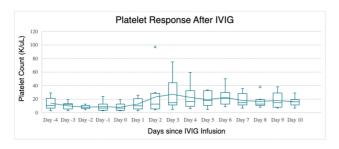


Figure 1-Platelet count after concurrent IVIG infusion.

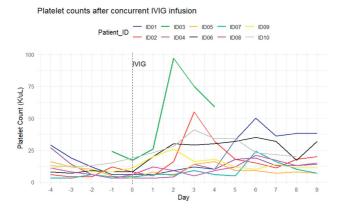


Figure 2-Platelet count after concurrent IVIG infusion: individual patient data.

Reactive Antibody assay. This study is limited by its small sample size; however, AITP in the context of allogeneic HSCT is a rare condition, and this case series provides promising evidence to support the use of concurrent IVIG and platelet infusions.

Conclusions

The findings of this study demonstrate that the administration of continuous IVIG (2 g/kg) along with platelet infusion over 48-hour hours is a safe and effective method that could potentially overcome refractory AITP in allo-HSCT patients and serve as a temporary measure until platelet engraftment can occur. Furthermore, this combined treatment may also be helpful in cases of life-threatening hemorrhages or invasive procedures with a high risk of bleeding.

Disclosure of prior presentation/publication

This manuscript has not been previously published and has not been submitted for publication elsewhere while under consideration.

Financial disclosure

This paper did not receive any financial support.

Ethics committee and institutional review board approval

Ethics approval was obtained by the University of Kansas Medical Center institutional review board.

Patient consent statement

Subjects gave their informed consent.

Permission to reproduce material from other sources

Not applicable.

Clinical trial registration

Not applicable.

Conflicts of interest

A list of disclosures will be submitted.

Data availability statement

Not applicable.

REFERENCES

- Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354(17):1813–26.
- Buxbaum NP, Pavletic SZ. Autoimmunity following allogeneic hematopoietic stem cell transplantation. Front Immunol. 2020;11:2017.
- Baur K, Buser AS, Infanti L, Halter JP, Passweg JR, Holbro A. Immune cytopenia after allogeneic haematopoietic stem-cell transplantation: challenges, approaches, and future directions. Lancet Haematol. 2021;8(3):e229–39.
- Rodeghiero F, Stasi R, Gernsheimer T, Michel M, Provan D, Arnold DM, et al. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood. 2009;113(11):2386–93.
- 5. Li Z, Rubinstein SM, Thota R, Savani M, Brissot E, Shaw BE, et al. Immune-mediated complications after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2016;22(8):1368–75.
- Fasano RM, Mamcarz E, Adams S, Donohue Jerussi T, Sugimoto K, Tian X, et al. Persistence of recipient human leucocyte antigen (HLA) antibodies and production of donor HLA antibodies following reduced intensity allogeneic haematopoietic stem cell transplantation. Br J Haematol. 2014;166(3):425–34.
- Cohn CS. Platelet transfusion refractoriness: how do I diagnose and manage? Hematology Am Soc Hematol Educ Program. 2020;2020(1):527–32.

- Yuan C, Boyd AM, Nelson J, Patel RD, Varela JC, Goldstein SC, et al. Eltrombopag for treating thrombocytopenia after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2019;25(7):1320–4.
- Song F, Al-Samkari H. Management of adult patients with immune thrombocytopenia (ITP): a review on current guidance and experience from clinical practice. J Blood Med. 2021;12:653–64.
- Neunert C, Lim W, Crowther M, Cohen A, Solberg Jr L, Crowther MA. The American Society of Hematology 2011 evidence-based practice guideline for immune thrombocytopenia. Blood. 2011;117(16):4190–207.
- 11. Chandramouli NB, Rodgers GM. Prolonged immunoglobulin and platelet infusion for treatment of immune thrombocytopenia. Am J Hematol. 2000;65(1):85–6.
- 12. Provan D, Stasi R, Newland AC, Blanchette VS, Bolton-Maggs P, Bussel JB, et al. International consensus report on the investigation and management of primary immune thrombocytopenia. Blood. 2010;115(2):168–86.
- 13. Spahr JE, Rodgers GM. Treatment of immune-mediated thrombocytopenia purpura with concurrent intravenous immunoglobulin and platelet transfusion: a retrospective review of 40 patients. Am J Hematol. 2008;83(2):122–5.
- Ancevski K, Cook R, Koth S, Fallon M. Continuous intravenous immunoglobulin and platelet infusion in allogeneic stem cell transplant patients with allo-immune thrombocytopenia. Biol Blood Marrow Transplant. 2014;20(2):S189–90.
- 15. Bento L, Canaro M, Bastida JM, Sampol A. Thrombocytopenia and therapeutic strategies after allogeneic hematopoietic stem cell transplantation. J Clin Med. 2022;11(5).
- First LR, Smith BR, Lipton J, Nathan DG, Parkman R, Rappeport JM. Isolated thrombocytopenia after allogeneic bone marrow transplantation: existence of transient and chronic thrombocytopenic syndromes. Blood. 1985;65(2):368–74.

- 17. Tanaka T, Inamoto Y, Yamashita T, Fuji S, Okinaka K, Kurosawa S, et al. Eltrombopag for treatment of thrombocytopenia after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2016;22(5):919–24.
- 18. Bruno B, Gooley T, Sullivan KM, Davis C, Bensinger WI, Storb R, et al. Secondary failure of platelet recovery after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2001;7(3):154–62.
- 19. Kuzmina Z, Eder S, Böhm A, Pernicka E, Vormittag L, Kalhs P, et al. Significantly worse survival of patients with NIH-defined chronic graft-versus-host disease and thrombocytopenia or progressive onset type: results of a prospective study. Leukemia. 2012;26(4):746–56.
- 20. Yamazaki R, Kuwana M, Mori T, Okazaki Y, Kawakami Y, Ikeda Y, et al. Prolonged thrombocytopenia after allogeneic hematopoietic stem cell transplantation: associations with impaired platelet production and increased platelet turnover. Bone Marrow Transplant. 2006;38(5):377–84.
- 21. Leytin V, Mykhaylov S, Starkey AF, Allen DJ, Lau H, Ni H, et al. Intravenous immunoglobulin inhibits anti-glycoprotein IIb-induced platelet apoptosis in a murine model of immune thrombocytopenia. Br J Haematol. 2006;133(1):78–82
- 22. Baumann MA, Menitove JE, Aster RH, Anderson T. Urgent treatment of idiopathic thrombocytopenic purpura with single-dose gammaglobulin infusion followed by platelet transfusion. Ann Intern Med. 1986;104(6):808–9.
- 23. Bierling P, Godeau B. Intravenous immunoglobulin and autoimmune thrombocytopenic purpura: 22 years on. Vox Sang. 2004;86(1):8–14.
- 24. Uchino H, Yasunaga K, Akatsuka J. A cooperative clinical trial of high-dose immunoglobulin therapy in 177 cases of idiopathic thrombocytopenic purpura. Thromb Haemost. 1984;51 (2):182–5.

HEMATOLOGY, TRANSFUSION AND CELL THERAPY

www.htct.com.br

Original article

Post-thaw dimethyl sulfoxide reduction in autologous peripheral blood progenitor cell suspensions

Miroslava Jandová (Da,b,*, Pavel Měřička , Jiří Gregor , Miriam Lánská , Aleš Bezrouk , Dana Čížková , Jakub Radocha ,

- ^a University Hospital Hradec Králové, Tissue Bank, Czechia
- ^b Charles University, Faculty of Medicine in Hradec Králové, Department of Histology and Embryology, Czechia
- ^c University Hospital Hradec Králové, 4th Department of Internal Medicine Hematology Czech Republic, Czechia
- ^d Charles University, Faculty of Medicine in Hradec Králové, Department of Medical Biophysics, Czechia

ARTICLE INFO

Article history: Received 6 December 2024 Accepted 19 May 2025 Available online 25 August 2025

Keywords:
Peripheral blood progenitor cells
Cryopreservation
DMSO reduction
Amyloidosis
Cell recovery

Background and objectives: Dimethyl sulfoxide has become the most common cryoprotectant used for cryopreservation of hematopoietic progenitor cells because of its efficiency, regardless of its potentially toxic side effects. Its application is considered safe, provided that the daily dose administered does not exceed 1 gram per kilogram of patient weight. Indications for its reduction after thawing are limited to patients with high risk of malignant arrhythmia and those with severely impaired renal function. However, dimethyl sulfoxide reduction can lead to the loss of viable progenitors.

Methods: A retrospective study of viable hematopoietic progenitor cell recovery after dimethyl sulfoxide reduction was performed with 13 patients (nine men, four women) with secondary amyloidosis in multiple myeloma (n=9), primary amyloid light chain amyloidosis (n=3), or severe adverse reaction at the beginning of the hematopoietic progenitor cell concentrate infusion (n=1). The Wilcoxon signed-rank test was used.

Results: The results of the dimethyl sulfoxide reduction process showed a high recovery of viable nucleated cells (median: 120.85 %), and of viable mononuclear cells (median: 104.53 %). There was a significant decrease in total number of viable CD34⁺ cells in comparison with data obtained after original collection (median: 51.49 %). No significant decrease in colony-forming unit capacity was observed after dimethyl sulfoxide reduction (median: 93.37 %).

Conclusion: The dimethyl sulfoxide removal process and total process recoveries revealed considerable individual variability. To minimize the risk of prolonged engraftment or non-engraftment, it is important to apply this process only to high-risk patients.

© 2025 Published by Elsevier España, S.L.U. on behalf of Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^{*} Corresponding author at: Tissue Bank, University Hospital Hradec Králové, Sokolská 585, 500 05 Hradec Králové – Nový Hradec Králové, Czechia.

E-mail address: miroslava.jandova@fnhk.cz (M. Jandová).

Introduction

After a period of using glycerol for the cryopreservation of hematopoietic progenitor cells (HPCs) [1], dimethyl sulfoxide (DMSO) has become the most commonly used cryoprotectant for this purpose because of its high cryoprotective efficiency and rapid penetration across cell membranes [2-4]. The great advantage of its use is the possibility of infusing the thawed cell product without removing the cryoprotectant, which was not possible with glycerol. However, the potential toxicity of DMSO has given rise to debates on the safety of its use. Cases of adverse reactions such as increased heart or respiratory rate, facial flushing, increased or decreased blood pressure, dyspnea, nausea, and vomiting have been described after infusion of HPC concentrates containing DMSO [3-9]. DMSO toxicity is dose-dependent. Therefore, strategies are being developed to neutralize the toxicity, to reduce the concentration of the cryoprotectant, or to wash it off before clinical administration. Infusion of an HPC product containing DMSO is generally accepted as safe in concentrations below 10 % (v/ v) [10] under the condition that the maximal daily dose of DMSO does not exceed 1 g per kg patient body weight [11,12]. While the above-mentioned symptoms usually cause only transient discomfort for the patient, serious adverse reactions have been described in patients with preexisting cardiovascular, respiratory, renal or central nervous system diseases, sometimes with fatal outcomes [6-8,13]. In the practice of University Hospital Hradec Králové, the most frequent medical indications for DMSO reduction are chronic renal failure caused by secondary amyloidosis in multiple myeloma and primary or secondary amyloidosis of the heart.

The most widely used technique in DMSO washing is gradual dilution of the cell suspension with its subsequent centrifugation and the addition of cryoprotectant-free solution [14,15]. The degree of dilution and the composition of the washing solution are usually adjusted to minimize osmotic changes. The components of the washing medium should be acceptable from a clinical point of view, i.e., it should not contain components of animal origin and should contain registered drugs, and use CE-certified medical devices, or products approved by the national competent authority (State Institute for Drug Control in the Czech Republic) [15]. In clinical practice, certified saline solutions/electrolytes, such as 0.9 % NaCl, Normosol-R® (Hospira, Inc., USA), Plasma-Lyte 148® (Baxter, USA), Ringer's solution (B. Braun, Germany) with dextran-40 (5–10 %), human serum albumin (1–5 %), hydroxyethyl starch (HES - 3-6 %), or acid citrate dextrose anticoagulant are acceptable. These media are often supplemented with dextran-40, HES, or human serum albumin at various concentrations [16-19].

Commercially available closed automatic systems developed for hematopoietic cell grafts, which are usually characterized by large-transplanted volumes, can also be used to wash out cryoprotectants. Examples of such systems are devices based on the principle of dilution and subsequent centrifugation, e.g., the COBE® 2991 Cell Processor (Terumo BCT, Inc.), Sepax S-100® (Sepax 2 S-100), and Biosafe SA® (GE HealthCare) [13,15,17,19,20], or on the principle of dilution and subsequent filtration, e.g., the Haemonetics ACP215

Automated Cell Processor® (Haemonetics Corp), CytoMate® (Baxter/Nexell), or Lovo® (Fresenius Kabi) [13,15,21,22].

Our clinical center has long experience with autologous HPC transplantation in multiple myeloma [23], and the infused DMSO dose is far below the limit [24] in most cases. A controlled study performed by Horacek et al. [25] did not report any differences in monitored vital functions between infusions of autologous and allogeneic HPC concentrates. Nevertheless, in a minority of cases, it was necessary to split the HPC dose over several days [24,26].

This retrospective study reviewed cases of primary or secondary amyloidosis as a complication of multiple myeloma treated by HPC autologous transplantation requiring DMSO reduction. Data regarding the influence of the freezing/thawing and DMSO reduction processes on the content of nucleated cells (NC), mononuclear cells (MNC), and CD34⁺ cells were analyzed. This analysis included pre- and post-process viability, the recovery of viable cells, and repopulation potency, as measured by the colony-forming unit-granulocyte macrophage (CFU-GM) assay, for samples contained within one 100 mL cryobag.

Methods and materials

Patients and study design

A retrospective study of the influence of freezing/thawing and the DMSO removal process on HPC concentrate parameters was conducted in 2013–2022. Thirteen patients were included. The inclusion criteria this study were complete documentation, initial NC concentration not exceeding 400 \times 10 $^9/L$, and processing within 24 h after collection. The DMSO was reduced to approximately a quarter of the initial concentration and no more than two 100 mL bags were infused per day. For the purpose of this analysis, data from only one washing process of one 100 mL cryobag from the total of three or four cryobags of HPC concentrate obtained by one leukapheresis and stored for clinical application were compared. The process of HPC leukapheresis, transport, processing, and application is presented in Figure 1.

HPC stimulation and collection

The HPCs were collected by leukapheresis after mobilization by cyclophosphamide (2.5 g per m^2 of the patient body surface area) and granulocyte colony-stimulating factor (10 μg per kg of the patient weight) at a separator, namely Cobe Spectra or Spectra Optia (Terumo BCT, USA). Melphalan (140 or 200 mg per m^2 of the patient body surface area) was used for conditioning.

HPC cryopreservation

After transport to the Tissue Establishment, collected HPCs were processed in a laminar flow cabinet and under a laminary ceiling that adhered to Grade A purity with Class B background within 24 h of the harvest. A standard cryopreservation protocol for autologous HPCs using CE-certified DMSO (WAK Chemie GmbH, FRG) in a final concentration

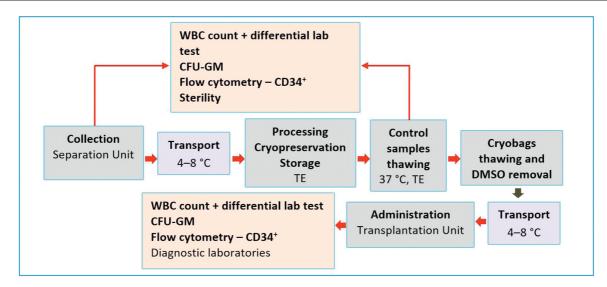


Figure 1-Diagram of hematopoietic progenitor cell collection, processing, and application.WBC: white blood cell; CFU-GM: colony forming unit-granulocyte macrophage; DMSO: dimethyl sulfoxide

of 10 % (v/v), and HES (Voluven 10 %, Fresenius Kabi, GmbH, FRG) in the final concentration of 5 % supplemented with 20 % (v/v) human serum albumin (5 mL per 100 mL) were used. Three or four cryobags containing 70–100 mL of HPC suspension were created from the initial collection bag with a mean volume of 194 mL (154–205 mL) and were frozen in a programmable freezer (Planer Biomed, England) with a cooling rate of 1 °C/min to -90 °C and 5 °C/min to -150 °C. Cryopreserved HPCs were stored in the vapor phase of liquid nitrogen at a temperature below -160 °C in a biological container (Chart MVE, USA) with automatic filling and continuous temperature recording. The average time of storage was 103 days (range: 26-679 days).

DMSO reduction

According to the results of estimation of the dose CD34+ cells from thawed control samples, the treating physician decided to use one or more bags. Metal cassettes containing bags with cryopreserved HPCs were removed from the storage container and thawed in a water bath at 37 °C. The thawing of each bag took approximately five minutes. The thawed bags were transferred to a clean room and further processed in the laminar flow cabinet (Grade A with Class B background). The total volume of each bag (mean 98 mL; range: 70-100 mL) was transferred to the washing bag, and was mixed with 258 mL of HES and 42 mL of ACD-A solution (Fresenius Kabi, GmbH, FRG). Then, the cell suspension was centrifuged for 20 min at 400 g at 4 °C in the adjacent room (Grade C). In all, 300 mL of the supernatant was removed again in the laminar flow cabinet after the centrifugation. The total time for the DMSO removal of each bag was approximately one hour. Bags containing washed HPCs were appropriately labeled and transferred to the clinical department in an insulated box at a temperature of 2-8 °C. The content was administered to the patient within two hours after thawing, without any

complications. The infusion time of each bag was approximately ten minutes.

Sampling and quality control tests

The following quality parameters of collected, cryopreserved, and DMSO-depleted concentrates were determined: hematocrit and blood count including detailed white blood cell differential, total number of viable NC (TNC), MNC, and CD34⁺, CFU-GM, and sterility.

Hematological parameters were determined by an automated hematological analyzer Sysmex XN3000 (Sysmex, Japan). CD34⁺ phenotyping and viability determination was performed with the flow cytometer FACS (fluorescence-activated cell sorting) Navios (Beckman Coulter, USA) using SW Kaluza, Version 1.2 (Beckman Coulter, USA). Cell suspension was incubated with the anti-CD34-PE and anti-CD45-FITC monoclonal antibodies (Beckman Coulter, USA), and 7-AAD (Beckman Coulter, USA) as a vital dye.

Sterility testing was performed using a Bactalert (type BTA 3D 240, SW version B 50, BioMérieux, France) automatic microbial detection system situated in a clean room (Grade A with a Class B background) according to Czech Pharmacopoiea [27].

During CFU-GM assay in a biohazard safety cabinet certified for level II handling of biological materials, the defined amount of HPC suspension was diluted in Iscove's modified Dulbecco's medium (Sigma Aldrich, Czech Republic) and then cultured in a semi-solid matrix (Metho-CultTM, StemCellTM Technologies, USA) in Petri dishes. Cultivation took place in an incubator set at 37 °C with 5 % CO₂ in air and \geq 95 % humidity (BBD Herasafe, USA). An inverted microscope (Olympus CK 40, Japan) was used for colony counting. To perform counting of CFU-GM, colonies were observed after 14 days in culture, using $10\times$ objective (50– $100\times$ magnification) according to Czech Pharmacopoiea [28].

Table 1 – Data	of patients	included	in the retro	spective study.
Patient number	Sex	Age (year)	Weight (kg)	Diagnosis/reason for washing
1	male	55	81	Multiple myeloma - secondary amyloidosis - suspected amyloidosis of heart
2	female	61	52	Primary amyloidosis of bone marrow, liver, and kidneys
3	male	48	94	Multiple myeloma - allergic adverse reaction (DMSO)
4	male	56	91	Multiple myeloma - secondary amyloidosis - suspected amyloidosis of heart
5	female	55	80	Multiple myeloma - secondary amyloidosis of kidneys
6	female	57	61	Multiple myeloma - secondary amyloidosis - suspected amyloidosis of heart
7	male	69	93	Primary amyloidosis of liver and lungs
8	female	51	58	Multiple myeloma - secondary amyloidosis of gastrointestinal tract and kidneys
9	male	44	102	Multiple myeloma - secondary amyloidosis - suspected amyloidosis of heart
10	male	58	84	Multiple myeloma - secondary amyloidosis of duodenum and heart
11	male	66	77	Multiple myeloma - secondary amyloidosis of gastrointestinal tract
12	male	59	67	Primary amyloidosis of bone marrow and kidneys
13	male	70	103	Multiple myeloma - secondary amyloidosis - suspected amyloidosis of heart

Cell recovery calculation

Values of individual parameters were compared: total number of viable NC, MNC, and CD34⁺ cells after collection, after cryopreservation, and after DMSO reduction. Recoveries of the individual phases of the DMSO reduction process such as: (1) freezing/thawing process, (2) DMSO removal, and (3) the total process (freezing/thawing + DMSO removal) were calculated according to the following equation:

Recovery =
$$\frac{parameter \ x \ viability \ post - process}{parameter \ x \ viability \ pre - process} \ x \ 100$$

Statistical methods

The processes described above were evaluated using total numbers of viable NC, MNC, CD34 $^+$ cells and CFU-GM. The data were statistically evaluated using MS Excel 2016 (Microsoft Corp., Redmond, WA, USA) and NCSS 10 statistical software (2015, NCSS, LLC., Kaysville, UT, USA, and available online: ncss.com/software/ncss [accessed on 21 April 2023]). Because the measured data did not show a normal distribution, the median and the first and third quartiles (1st Q, 3rd Q) were utilized as descriptive statistics. Bonferroni correction of the alpha significance level was used for multiple data comparisons. The data were compared using the Wilcoxon signed-rank test at the corrected alpha value α = 0.017. Correlation analysis between the number of viable CD34 $^+$ cells and CFU-GM after thawing and DMSO removal was conducted.

Results

Study inclusion criteria were met by 13 patients (nine men and four women) with an average age of 58 years (range: 44 –70 years) and weight of 80 kg (range: 52–103 kg). The retrospective study period was 2013–2020. The whole process of HPC collection, transport, processing, and administration is presented in Figure 1. Twelve patients had a diagnosis of primary amyloidosis or secondary amyloidosis as a complication of multiple myeloma, and one patient (No. 3) had an allergic

adverse reaction to DMSO at the beginning of HPC infusion (Table 1). $\,$

Cell parameters of key processes

Descriptive statistics (median, 1st and 3rd quartile) of HPC key parameters characterizing individual processes, such as leukapheresis, freezing/thawing, and DMSO removal process are presented in Tables 2-4. These parameters were compared using the Wilcoxon signed-rank test with the aim of finding any significant differences between the values characterizing the pre- and post-processes. The freezing/thawing process significantly reduced the NC and MNC viability, TNC as well as the CFU-GM dose per kg of patient weight. The doses of MNC per kg and CD34⁺ cells per kg were not affected, and the post-thaw MNC percentage increased significantly (Table 2).

Table 2 – Descriptive statistics of the data characterizing freezing/thawing process, and their comparison using the Wilcoxon signed-rank test. Data obtained from 13 patients.

Parameter	Pre-process (leukapheresis) median (Q1; Q3)	Post-process (freezing- thawing) median (Q1; Q3)	p-value
TNC/kg (x 10 ⁸)	2.46 (1.96; 4.01)	1.79 (1.24; 3.04)	0.006*
NC viability (%)	100 (100; 100)	82 (74; 95)	0.002*
TMNC/kg (x 10 ⁸)	1.51 (0.80; 1.78)	1.40 (1.01; 2.09)	0.364
MNC viability (%)	100 (100; 100)	87 (92; 99)	0.002*
MNC from TNC (%)	56 (33; 66)	70 (60; 83)	0.002*
$CD34^{+}/kg (x 10^{6})$	3.71 (1.64; 6.15)	3.88 (1.42; 6.84)	0.529
CD34 ⁺ from TNC (%)	1.33 (0.80; 2.00)	1.63 (0.87; 2.09)	0.014*
CFU-GM/kg (x 10 ⁵)	2.97 (1.71; 4.05)	1.68 (1.42; 2.91)	0.002*

^{*} Statistically significant differenceTNC: total number of viable nucleated cells; NC: nucleated cells; TMNC: total number of viable mononuclear cells; MNC mononuclear cells; CFU-GM: colony forming unit-granulocyte macrophage.

Table 3 – Descriptive statistics of the data characterizing dimethyl sulfoxide removal process, and their comparison using the Wilcoxon signed-rank test. Data obtained from 13 patients.

Parameter	Pre-process (freezing- thawing) median (Q1; Q3)	Post-process (DMSO removal) median (Q1; Q3)	P value
TNC/kg (x 10 ⁸)	1.79 (1.24; 3.04)	1.79 (1.37; 2.20)	0.576
NC viability (%)	82 (74; 95)	78 (69; 85)	0.025
TMNC/kg (x 10 ⁸)	1.40 (1.01; 2.09)	1.40 (0.87; 1.75)	0.402
MNC viability (%)	87 (92; 99)	87 (83; 92)	0.002*
MNC from TNC (%)	70 (60; 83)	63 (47; 83)	0.081
CD34+/kg (x 106)	3.88 (1.42; 6.84)	1.76 (1.13; 3.65)	0.018
CD34 ⁺ from TNC (%)	1.63 (0.87; 2.09)	0.90 0.51; 1.51)	0.002*
CFU-GM/kg (x 10 ⁵)	1.68 (1.42; 2.91)	1.82 (1.31; 2.71)	0.133

^{*} Statistically significant differenceTNC: total number of viable nucleated cells; NC: nucleated cells; TMNC: total number of viable mononuclear cells; MNC mononuclear cells; CFU-GM: colony forming unit-granulocyte macrophage.

The DMSO removal process significantly reduced MNC viability and the percentage of $CD34^+$ cells from leukocytes. Other parameters were not significantly affected (Table 3).

Data from leukapheresis indicated that the DMSO removal process significantly reduced the number of viable NC and MNC, the percentage of CD34⁺ cells from leukocytes, CD34⁺ cells, and CFU-GM dose per patient body weight (Table 4).

Results of sterility determination

Sterility was verified in all samples after cryopreservation and after DMSO removal. All evaluated samples were sterile.

Post-thaw recovery of key hematopoietic progenitor cells parameters

Figures 2, 3, and 4 show HPC recoveries estimated from the thawed cryobags. Figure 2 shows that after cryopreservation and thawing, the number of all NC was reduced, and CD34⁺ cell potency was also reduced.

Figure 3 shows greater inter-individual differences in cell recovery for TNC, TMNC, and CD34 $^+$. Recoveries expressed as medians (Q1; Q3) were: TNC 120.85 % (61.16 %; 154.16 %), TMNC 104.53 % (38.98 %;139.27 %), CD34 $^+$ 51.49 % (40.35 %; 91.82 %) and CFU-GM 93.37 % (90.86 %; 97.59 %) on comparing values obtained after freezing/thawing and after DMSO removal

Figure 4 shows that DMSO removal decreased TNC, HPC potency and CD34 $^+$ content. Recoveries, expressed as medians (Q1; Q3), were: TNC 83.98 % (42.62 %; 95.26 %), TMNC 98.71 % (57.00 %; 166.40 %), CD34 $^+$ 50.69 % (35.90 %; 95.96 %), and CFU-GM 74.80 % (57.92 %; 85.07 %), on comparing values obtained after leukapheresis and after DMSO removal.

Table 4 – Descriptive statistics of the data characterizing total dimethyl sulfoxide removal process, and their comparison using Wilcoxon signed-rank test. Data obtained from 13 patients.

Parameter	Pre-process (leukapheresis) median (Q1; Q3)	Post-process (DMSO removal) median (Q1; Q3)	P value
TNC/kg (10 ⁸)	2.46 (1.96; 4.01)	1.79 (1.37; 2.20)	0.036
NC viability (%)	100 (100; 100)	78 (69; 85)	0.002*
TMNC/kg (10 ⁸)	1.51 (0.80; 1.78)	1.40 (0.87; 1.75)	0.944
MNC viability (%)	100 (100; 100)	87 (83; 92)	0.002*
MNC from TNC (%)	56 (33; 66)	63 (47; 83)	0.036
CD34+/kg (10 ⁶)	3.71 (1.64; 6.15)	1.76 (1.13; 3.65)	0.010*
CD34+ from TNC (%)	1.33 (0.80; 2.00)	0.90 0.51; 1.51)	0.003*
CFU-GM/kg (10 ⁵)	2.97 (1.71; 4.05)	1.82 (1.31; 2.71)	0.006*

^{*} Statistically significant differenceTNC: total number of viable nucleated cells; NC: nucleated cells; TMNC: total number of viable mononuclear cells; MNC mononuclear cells; CFU-GM: colony forming unit-granulocyte macrophage.

Results of correlation analysis between CFU-GM and ${ m CD34^+}$ cells

Table 4 shows considerable decreases in CFU-GM and CD34⁺per kg after DMSO removal. Using Evans Handbook [29], the correlation between post-thaw values of viable CD34⁺ content and CFU-GM content was found to be significant (r = 0.751; p-value = 0.003) (Figure 5). A comparable result was found after DMSO removal (r = 0.814; p-value = 0.001) (Figure 6).

Engraftment of neutrophils and platelets

In the group of patients with DMSO removal, the engraftment in neutrophils was on average 13.81 \pm 2.58 days and of the platelets it was 13.77 \pm 2.36 days, which was compliant with the European Society for Blood and Marrow Transplantation (EBMT) Handbook criteria [30]. Engraftment did not exceed the 21-day threshold for any patient.

Discussion

Glycerol was used as a cryoprotectant in the first autologous hematopoietic cell transplantations performed before the start of the regular hematological transplantation program at University Hospital Hradec Králové, [31,32]. Later, the use of DMSO was introduced, and washing was performed as standard. Since the beginning of 1994, routine washing of DMSO was stopped, and the rule applied abroad was followed, namely that the daily dose of DMSO per kg of the recipient's weight should not exceed 1 g. Nevertheless, certain doubts persisted in the Czech Republic about the clinical use of DMSO, especially with regard to the quality of the product

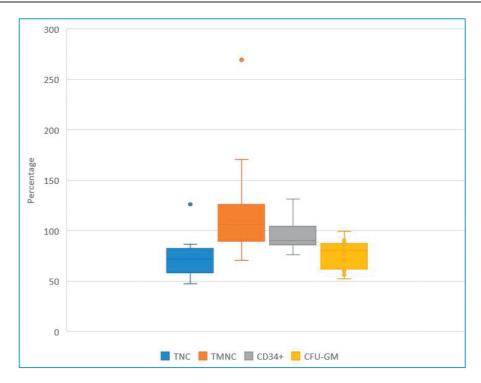


Figure 2 – Recovery (%) of key hematopoietic progenitor cell parameters after the freezing/thawing process, comparing data from collection and after freezing/thawing. Blue, orange, and yellow points denote outliers. TNC: total number of viable nucleated cells; TMNC: total number of viable mononuclear cells; CFU-GM: colony forming unit-granulocyte macrophage.

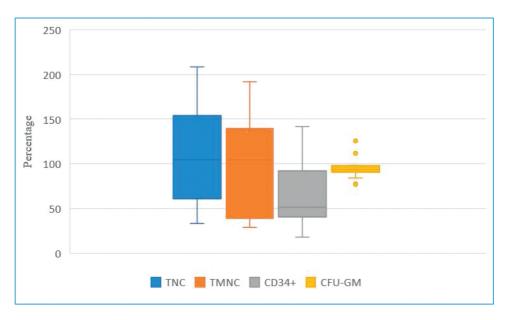


Figure 3 – Recovery (%) of key hematopoietic progenitor cell parameters after the dimethyl sulfoxide removal process, comparing data after freezing/thawing process and after dimethyl sulfoxide removal.TNC: total number of viable nucleated cells; TMNC: total number of viable mononuclear cells; CFU-GM: colony forming unit-granulocyte macrophage

[12]. These doubts were definitively resolved in 1996 when the State Institute for Drug Control fully accepted DMSO for use. This acceptance, however, mandated laboratory testing of DMSO products at individual transplantation centers until a

clinically applicable CE-marked product became available in the Czech Republic. If the DMSO daily dose exceeded the recommended limit, the infusions were spread over several days [12].

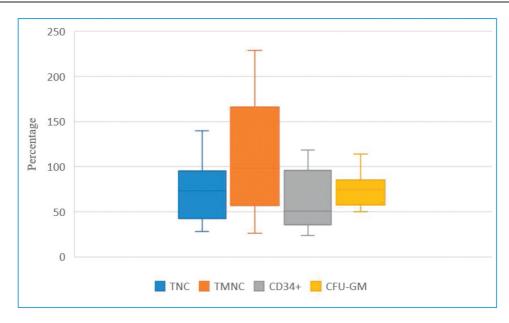


Figure 4–Recovery (%) of key hematopoietic progenitor cell parameters after dimethyl sulfoxide removal, comparing data at collection and after dimethyl sulfoxide removal.TNC: total number of viable nucleated cells; TMNC: total number of viable mononuclear cells; CFU-GM: colony forming unit-granulocyte macrophage

Currently, there are new trends, the goal of which is either to find other equally effective cryoprotective solutions or to reduce the risk of adverse reactions [15]. In general, the rule of "three Rs" — Replace, Reduce, Remove [33] — is applied. This involves the search for suitable combinations with well-known, but individually less effective, cryoprotectants such as ethylene glycol, hydroxycellulose, sucrose, maltose, trehalose, and also some macromolecules (dextran, polyvinylpyrrolidone, etc.) [13]. Automatic washing systems working in a closed system are available. Compared with classic manual DMSO washing, their

advantage is high viability of HPCs and minimal risk of microbial contamination. The disadvantage is the high price of the device [13,17,19,20].

Previous studies at this center with multiple myeloma patients who underwent autologous transplantation demonstrated that DMSO doses per kg administered at transplantation were, in the majority of cases, well below the maximum allowable daily dose [24]. The problem is posed by occasional poorly mobilized patients, with whom it was necessary to split the transplant dose into two after several days.

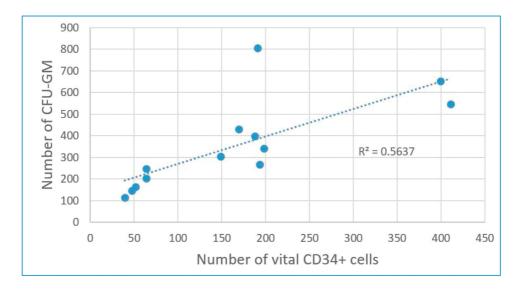


Figure 5 – Correlation between post-thaw values of CD34 $^{+}$ cell content and colony forming unit-granulocyte macrophage (CFU-GM) content (r = 0.751; p-value = 0.003).

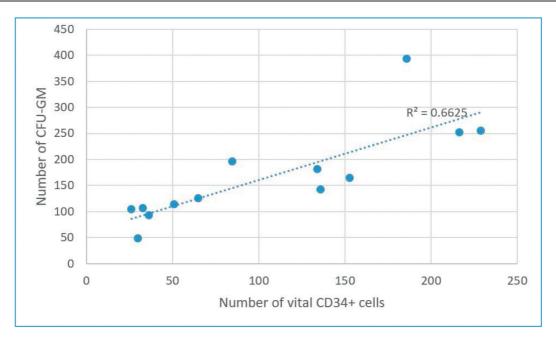


Figure 6 – Correlation between the CD34 $^+$ cell content and colony forming unit-granulocyte macrophage (CFU-GM) content after dimethyl sulfoxide removal (r = 0.814; p-value = 0.001).

In accordance with Yang et al. [34], this study demonstrated a correlation between the level of CD34+ cells and CFU-GM content. This correlation does not mean, however, that in individual cases such a correlation may not exist as demonstrated by Watts et al. [35] and Morgestern et al. [36]. The results of this study for the CD34+ cell freeze/thaw recovery process were higher that the results of Yang et al. [34], who established a median recovery of viable CD34+ cells in the freeze/thaw process of 66.4 % (versus 90.18 % in the present study), and CFU-GM of 63.0 % (versus 80.6 % in the present study). This difference can be explained by more efficient cryoprotection based on a combination of DMSO and HES. Mean CD34+ cell recovery after manual DMSO removal, as determined by Chen et al. [37] using Trypan blue solution, was 85.4 % which was higher than the present results determined by flow cytometry.

The results of this study were achieved in a relatively small group, as DMSO reduction after thawing was performed only for patients with a known higher risk of arrhythmia (amyloidosis of the heart) or who were at risk of impaired elimination of the DMSO (renal failure caused by amyloidosis of the kidney). In only one case, the removal of DMSO was not planned but was performed in an emergency situation, namely a severe adverse reaction after initiation of an infusion of thawed concentrate.

It was confirmed that the removal of DMSO by washing the cells leads to a significant decrease in the viability of MNCs and the dose of CD34⁺ cells per kg of recipient weight (Table 2) and that the results of the washing process and of the entire process show large individual differences. Decreased viability may be a manifestation of cryopreservation-induced delayed cell death [38]. Nevertheless, in all these patients, a sufficient dose was administered, and delayed engraftments of neutrophils or platelets were not reported. In our practice, we routinely estimate the dose of CD34⁺ cells and CFU-GM from

thawed control samples, always comparing the resulting values with the doses determined before cryopreservation.

The results of this study confirm that DMSO washing should be limited to indicated cases only, which is in line with the European Directorate for the Quality of Medicines & HealthCare (EDQM) 2022 recommendation [11]. Another problem is that the result of determining the washed product sterility is known only after administration to the recipient. However, this risk is minimal if the thawed product is handled in purity Grade A clean rooms with Class B background.

We still regard the use of DMSO as safe if the daily dose of 1 g per kg is not exceeded [11].

Conclusion

DMSO removal should only be performed in indicated cases, as it leads to significant loss of progenitor cells. Despite the fact that data from only 13 patients were analyzed and that the resulting CD34 $^{+}$ dose was suboptimal, engraftments were achieved in all cases. The minimal CD34 $^{+}$ dose should be 1 \times 10 6 per kg of patient body weight with optimum being 2 \times 10 6 per kg of patient body weight as recommended by EBMT standards. Determination of the CD34 $^{+}$ level should be performed simultaneously with determination of CFU-GM to minimize the risk of prolonged engraftment or non-engraftment

Financial disclosure statement

This study was supported by MH CZ-DRO (UHHK, 00179906).

Conflicts of interest

The author declares no conflicts of interest.

CRediT authorship contribution statement

Miroslava Jandová: Writing – original draft, Conceptualization, Data curation. Pavel Měřička: Methodology, Writing – review & editing. Jiří Gregor: Methodology. Miriam Lánská: Visualization. Aleš Bezrouk: Formal analysis. Dana Čížková: Writing – review & editing. Jakub Radocha: Writing – review & editing.

Data availability statement

The data will be available upon request to the corresponding author.

REFERENCES

- 1. Pegg DE, Trotman RE. The preservation of human bone marrow at -79 c: a temperature-controlled method of two-stage cooling. J Clin Pathol. 1959;12(5):477–82.
- Acker J, Bondarovych M, Brunotte R, et al. Preservation and storage of cells for therapy: current applications and protocols. In: Gimble JM, Marolt Presen D, Oreffo ROC, Wolbank S, Redl H, eds. Cell engineering and regeneration, Reference series in biomedical engineering, Cham: Springer; 2022.. ISBN: 978-3-319-37076-7.
- 3. Hornberger K, Yu G, McKenna D, Hubel A. Cryopreservation of hematopoietic stem cells: emerging assays, cryoprotectant agents, and technology to improve outcomes. Transfus Med Hemother. 2019;46(3):188–96.
- 4. Syme R, Bewick M, Stewart D, Porter K, Chadderton T, Glück S. The role of depletion of dimethyl sulfoxide before autografting: on hematologic recovery, side effects, and toxicity. Biol Blood Marrow Transplant. 2004;10(2):135–41.
- 5. Ruiz-Delgado GJ, Mancías-Guerra C, EL Tamez-Gómez, LN Rodríguez-Romo, López-Otero A, Hernández-Arizpe A, et al. Dimethyl sulfoxide-induced toxicity in cord blood stem cell transplantation: report of three cases and review of the literature. Acta Haematol. 2009;122(1):1–5.
- Shu Z, Heimfeld S, Gao D. Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion. Bone Marrow Transplant. 2014;49(4):469–76.
- 7. Cox MA, Kastrup J, Hrubiško M. Historical perspectives and the future of adverse reactions associated with haemopoietic stem cells cryopreserved with dimethyl sulfoxide. Cell Tissue Bank. 2012;13(2):203–15.
- 8. Milone G, Mercurio S, Strano A, Leotta S, Pinto V, Battiato K, et al. Adverse events after infusions of cryopreserved hematopoietic stem cells depend on non-mononuclear cells in the infused suspension and patient age. Cytotherapy. 2007;9 (4):348–55.
- 9. Yi X, Liu M, Luo Q, Zhuo H, Cao H, Wang J, et al. Toxic effects of dimethyl sulfoxide on red blood cells, platelets, and vascular endothelial cells in vitro. FEBS Open Bio. 2017;7(4):485–94.
- Verheijen M, Lienhard M, Schrooders Y, Clayton O, Nudischer R, Boerno S, et al. DMSO induces drastic changes in human

- cellular processes and epigenetic landscape in vitro. Sci Rep. 2019;9(1):4641.
- 11. European Directorate for the Quality of Medicines, Consell d'Europa. Guide to the quality and safety of tissues and cells for human application [cited April 13, 2022]. Available from: https://freepub.edqm.eu/publications/AUTOPUB_17/detail
- 12. Měřička P, Straková H. Cryoprotectants in medical practice: May 12-15, 1997, Hradec Kralové, Czech Republic long abstracts. Paris: IIR = IIF; 1998 (Refrigeration Science and Technology).
- 13. Shu Z, Heimfeld S, Huang Z, Liu C, Gao D. Progress in cryopreservation of stem cells and immune cells for cytotherapy. In: Demirer T, ed. Progress in stem cell transplantation, InTech; 2015. [cited April 13, 2023]. Available from: http://www.intechopen.com/books/progress-in-stem-cell-transplantation/progress-in-cryopreservation-of-stem-cells-and-immunecells-for-cytotherapy.
- 14. Meryman HT. Cryopreservation of living cells: principles and practice. Transfusion. 2007;47(5):935–45.
- Awan M, Buriak I, Fleck R, Fuller B, Goltsev A, Kerby J, et al. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regen Med. 2020;15 (3):1463–91.
- Rowley SD, Feng Z, Yadock D, Holmberg L, Macleod B, Heimfeld S. Post-thaw removal of DMSO does not completely abrogate infusional toxicity or the need for pre-infusion histamine blockade. Cytotherapy. 1999;1(6):439–46.
- Rodríguez L, Azqueta C, Azzalin S, García J, Querol S. Washing of cord blood grafts after thawing: high cell recovery using an automated and closed system. Vox Sang. 2004;87(3):165–72.
- Foïs E, Desmartin M, Benhamida S, et al. Recovery, viability and clinical toxicity of thawed and washed haematopoietic progenitor cells: analysis of 952 autologous peripheral blood stem cell transplantations. Bone Marrow Transplant. 2007;40 (9):831–5.
- 19. Decot V, Houzé P, Stoltz JF, Bensoussan D. Quantification of residual dimethylsulfoxide after washing cryopreserved stem cells and thawing tissue grafts. Biomed Mater Eng. 2009;19(4 –5):293–300.
- Adamusová L, Kořístek Z, Smejkalová J, et al. Automatizované promývání transplantátů krvetvorných buněk pro autologní použití. Transfúze Hematol Dnes. 2018;24(2):115–22.
- Calmels B, Houzé P, Hengesse JC, Ducrot T, Malenfant C, Chabannon C. Preclinical evaluation of an automated closed fluid management device: cytomateTM, for washing out DMSO from hematopoietic stem cell grafts after thawing. Bone Marrow Transplant. 2003;31(9):823–8.
- 22. Mfarrej B, Bouchet G, Couquiaud J, et al. Pre-clinical assessment of the Lovo device for dimethyl sulfoxide removal and cell concentration in thawed hematopoietic progenitor cell grafts. Cytotherapy. 2017;19(12):1501–8.
- Radocha J, Maisnar V, Zavřelová A, et al. Fifteen years of single center experience with stem cell transplantation for multiple myeloma: a retrospective analysis. Acta Medica Cordoba. 2013;56(1):9–13.
- 24. Měříčka P, Straková H, Honegrová B, et al. Retrospective analysis of dimethylsulphoxide load in autologous peripheral progenitor cell transplantation in multiple myeloma. CryoLetters; 2018264–5.
- 25. Horacek JM, Jebavy L, Jakl M, Zak P, Mericka P, Maly J. Cardiovascular changes associated with infusion of hematopoietic cell grafts in oncohematological patients impact of cryopreservation with dimethylsulfoxide. Exp Oncol. 2009;31(2):121–2.
- 26. Chrz V. Increased qualitative and quantitative requirements put on haematopoietic cell establishments as the result of the COVID-19 pandemic-own experience. Paris, France: International Institute of Refrigeration; 2021 (Refrigeration Science and Technology).

- 27. Ministry of Health of the Czech Republic. 2.6.1 Sterility testing. Czech pharmacopoeia, 2017. 1st ed. Prague, Czech Republic: Grada Publishing; 2017 a.s.s. 1000.
- 28. Ministry of Health of the Czech Repiublic. 2.7.28 Determination of the number of colony-forming units in human hematopoietic progenitor cells. Czech pharmacopoeia, 2017. 1st ed. Prague, Czech Republic: Grada Publishing; 2017 a.s.s. 1000.
- Evans RH. An analysis of criterion variable reliability in conjoint analysis. Percept Mot Skills. 1996;82(3):988–90.
- 30. Kröger N., Gribben J., Chabannon C., Yakoub-Agha I., Einsele H., European Society for Blood and Marrow Transplantation, et al. The EBMT/EHA CAR-T cell handbook 2022 [cited in May 2020]. Available from: https://ezproxy.library.dal.ca/login?url= 10.1007/978-3-030-94353-0.
- 31. Blaha M, Mericka P, Zak P, Stepanova V, Vavra L, Maly J, et al. The risk of infection transmission from blood progenitor cell concentrates. J Hematother Stem Cell Res. 2003;12 (2):161–4.
- 32. Měricka P, Schustr P, Vins M, et al. Containers for freezing and storage of bone marrow stem cells. Sb Vedeckych Pr Lek Fak Karlovy Univ V Hradci Kralove. 1991;34(4):367–87.

- 33. Buriak IA, Elliott G, Fleck RA, et al. Preservation and storage of cells for therapy: fundamental aspects of low temperature science. In: Gimble JM, Marolt PD, Oreffo ROC, Wolbank S, Redl H, eds. Cell engineering and regeneration, Cham: Springer International Publishing; 2022. ISBN: 978-3-319-37076-7.
- 34. Yang H, Acker JP, Cabuhat M, Letcher B, Larratt L, McGann LE. Association of post-thaw viable CD34+ cells and CFU-GM with time to hematopoietic engraftment. Bone Marrow Transplant. 2005;35(9):881–7.
- 35. Watts MJ, Linch DC. Optimisation and quality control of cell processing for autologous stem cell transplantation. Br J Haematol. 2016;175(5):771–83.
- 36. Morgenstern DA, Ahsan G, Brocklesby M, et al. Post-thaw viability of cryopreserved peripheral blood stem cells (PBSC) does not guarantee functional activity: important implications for quality assurance of stem cell transplant programmes. Br J Haematol. 2016;174(6):942–51.
- 37. Chen X, Huang J, Wu J, Hao J, Fu B, Wang Y, et al. Human mesenchymal stem cells. Cell Prolif. 2022;55(4):11.
- 38. Baust JM, Snyder KK, VanBuskirk RG, Baust JG. Changing paradigms in biopreservation. Biopreserv Biobank. 2009;7(1):3–12.

HEMATOLOGY, TRANSFUSION AND CELL THERAPY

www.htct.com.br

Original article

Updating the Brazilian clinical practice guidelines for sickle cell disease: Recommendations and development process

Ludmila Peres Gargano ^a, Mariana Millan Fachi ^a, Layssa Andrade Oliveira ^a, Clarisse Lobo ^b, Katharina Nelly Tobos Melnikoff ^c, Selma Soriano ^a, Marta da Cunha Lobo Souto Maior ^d, Meline Rossetto Kron-Rodrigues ^d, Dalila Fernandes Gomes ^d, Haliton Alves Oliveira Junior ^a, Rosa Camila Lucchetta ^a,*

ARTICLE INFO

Article history: Received 28 April 2025 Accepted 21 May 2025 Available online 23 August 2025

Keywords:
Sickle cell anemial
Practice guidelines
Public health
Health technology assessment

ABSTRACT

Background: Sickle cell disease is a hereditary blood disorder that significantly impacts morbidity and mortality, requiring comprehensive care. In Brazil, its management in the National Health Service follows the Brazilian Clinical Practice Guidelines, based on evidence and expert consensus. Periodic updates ensure alignment with new scientific findings

Objectives: This study describes the methodology for updating the clinical guidelines for sickle cell disease and provides an overview of recommendations for diagnosis, treatment and monitoring, emphasizing the evidence and health technology assessments for prioritized technologies.

Methods: The update followed the technical guide of the Brazilian Ministry of Health, and the Gradings of Recommendation, Assessment, Development and Evaluation (GRADE) approach. All the recommendations were assessed by the National Committee for Health Technology Incorporation (Conitec). The clinical guidelines panel included health technology assessment researchers, clinical experts, and policymakers. Systematic reviews assessed new evidence with stakeholder contributions being incorporated through public consultation. Cost-effectiveness analysis was applied to support new technology coverage or changes.

Results: The updated clinical guidelines provide structured recommendations for screening, diagnosis, prophylaxis, vaccination, and treatment, covering pharmacological and

^a Hospital Alemão Oswaldo Cruz, São Paulo, Brazil

^b Instituto Estadual de Hematologia Arthur de Siqueira Cavalcanti, SES, Rio de Janeiro, Brazil

^c Coordenadoria de Saúde Sudeste do Município de São Paulo, São Paulo, Brazil

^d Brazilian Ministry of Health's (MoH), Brasília, Brazil

^{*} Corresponding author at: Health Technology Assessment Unit, Hospital Alemão Oswaldo Cruz, Paulista Avenue, 500 (5th floor), Bela Vista, São Paulo, 01310-000, Brazil.

E-mail address: rc.lucch@yahoo.com.br (R.C. Lucchetta).

non-pharmacological approaches. It emphasizes patient and caregiver education to promote early recognition of complications. Expected benefits include fewer pain crises, fewer hospitalizations and transfusions, and improved fetal hemoglobin level, quality of life and survival rates. Key updates include listing epoetin alfa and 100 mg hydroxyurea tablets, expanding hydroxyurea eligibility criteria and revising monitoring protocols.

Conclusion: The updated clinical practice guidelines standardize sickle cell disease care in the Brazilian NHS aligned with current evidence. Dissemination and integration aim to enhance healthcare delivery, while future assessments should optimize real-world implementation.

© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Sickle Cell Disease (SCD) is a genetic condition encompassing a group of hereditary disorders caused by alterations in the structure of hemoglobin (Hb) that may be associated with defects in its synthesis [1,2]. Sickle-shaped red blood cells (RBCs) are rigid and exhibit membrane alterations, making them prone to rupture, leading to intravascular hemolysis and chronic hemolytic anemia. Additionally, sickled RBCs express an increased quantity of adhesion molecules, promoting heightened interactions with endothelial cells, leukocytes, and platelets [1,2] These processes, coupled with endothelial damage, proliferative vasculopathy, and hypercoagulability, contribute to the primary clinical manifestations of SCD, including vaso-occlusive episodes, acute pain, inflammatory responses, and multi-organ damage [3–6].

SCD is among the most common genetic disorders worldwide with an estimated 5 % of the global population carrying the beta-S globin mutation [7]. Hemoglobinopathies resulting from structural hemoglobin defects are particularly prevalent in African populations, where approximately 15 % of infant mortality is attributed to SCD [8]. This elevated prevalence of the Hb S gene among populations of African descent is reflected globally [9].

In Brazil, approximately 4 % of the population carries the sickle cell trait, with a heterogeneous distribution across regions [10,11]. According to the annual data report of the National Neonatal Screening Program, 5428 newborns were diagnosed with SCD between 2014 and 2018 [12]. While recent data are lacking, estimates from 2007 suggest that 25,000 to 50,000 individuals in Brazil are affected by sickle cell anemia (Hb SS homozygotes), compound heterozygosity, or double heterozygosity for SCD [11,13].

Due to extensive racial mixing and population migrations, SCD is present throughout the Brazilian territory. Although the condition is not exclusive to any single group and can occur in individuals of all skin tones, it is most prevalent among populations with African, Mediterranean, Middle Eastern, and South Asian ancestry [11]. The estimated prevalence of the sickle cell trait ranges from 6-10 %. Historically, sickle cell trait was introduced to Brazil via the transatlantic slave trade, as enslaved individuals were forcibly brought from Africa [14]. Consequently, SCD remained neglected for a long

time, rendered invisible by structural and institutional racism [15,16].

Despite being a prevalent genetic disorder, described over a century ago, with significant health and economic burden [17,18], patients with SCD are particularly vulnerable to health care disparities and treatment options for SCD remain limited [19,20]. Hydroxyurea (HU), blood transfusions, and stem cell transplantation are currently the primary therapeutic approaches, but access and utilization vary greatly [21]. This underscores the urgent need to improve the care of SCD patients by expanding access to existing treatments, promoting the adoption of new therapies.

In Brazil, the care of patients with SCD in the public National Health Service (Sistema Único de Saúde - SUS) is guided by the Brazilian Clinical Practice Guidelines (CPG). These guidelines outline comprehensive disease management and regulate the use of health technologies listed in the NHS, specifying eligibility criteria, monitoring requirements, and conditions for treatment discontinuation. The NHS is a publicly funded healthcare system that provides universal access to listed health services, including prevention, diagnosis, treatment, and rehabilitation. When a health technology is listed in the NHS, it must be provided free of charge to patients. Its distribution and availability may occur at the federal, state, or municipal level, depending on the management and procurement policies established.

This work aims to present the process of updating the CPG for SCD, including the health technology assessment process and final recommendations on diagnostic and therapeutic approaches.

Methods

The updated Brazilian CPG for the diagnosis, treatment, and monitoring of SCD patients was developed by the Ministry of Health (MoH) in conjunction with invited medical experts and methodological researchers from the Health Technology Assessment Unit at the Hospital Alemão Oswaldo Cruz. Although no clinical protocols aligned with our scope or recently updated CPG were identified to support the adoption (adolopment) process recommended by the GRADE-ADOLOP-MENT methodology [22], in this update we reviewed previous SCD CPG recommendations (from 2018) [23] and considered

the addition of new recommendations when pertinent to the Brazilian context, and new scientific evidence available in the literature. The entire process of updating and drafting the guidelines followed the legislative and methodological guidelines established by the MoH [24], which are aligned with the GRADE guidelines [25].

The AGREE II Reporting Checklist was used to support reporting guideline recommendations (Supplementary Table S1).

Scope and purpose

The target population includes children and adults with suspicion or diagnosis of SCD, whether with the sickle cell trait (Hb AS), the homozygous Hb S mutation (Hb SS), or compound heterozygosity (e.g., Hb S β^0 , Hb S β^+ , Hb SC, Hb SD, Hb S β^{thal} , according to the International Classification of Diseases-10 (ICD-10) codes D57.0, D57.1, D57.2.

Guidelines development group

The CPG Development Group was composed of a multidisciplinary team consisting of researchers, clinical experts, and policymakers to ensure a comprehensive and evidence-based approach. The process was coordinated by the General Coordination of Clinical Protocols and Therapeutic Guidelines (CGPCDT), a division of the Brazilian MoH responsible for the development and revision of CPGs (management committee) [26].

The researchers were from the Health Technology Assessment Unit (UATs) of the Hospital Alemão Oswaldo Cruz, a recognized Center with expertise in health technology assessment (HTA) and pharmacoeconomics (drafting group). Researchers were responsible for mapping relevant technologies for reimbursement, conducting systematic literature reviews and full HTA, including cost-effectiveness and budget impact analyses.

The clinical specialists (panelist group) were selected based on their expertise in hematology and SCD care. They contributed to the definition of the scope of the guidelines, formulation of PICO (Population, Intervention, Comparator, Outcome) questions, and drafting of clinical recommendations.

The government representatives included technical advisors of the MoH and representatives from the Secretariat of Science, Technology, and Innovation. The Health Economic-Industrial Complex (SECTICS), Department of Specialized and Thematic Care (DAET), and Department of Pharmaceutical Assistance and Strategic Supplies (DAF) provided strategic advice and ensured alignment with public health priorities. The final version of the CPG was reviewed by CGPCDT to ensure consistency and alignment with MoH regulations.

Meetings and updating process

The selection of CPG for periodic updates follows predefined criteria established by the Brazilian MoH. These include the time since the last update, availability of new evidence, listing of new health technologies in the NHS, horizon scanning

studies and recommendations from the MoH technical areas [26].

The CPG development process began with a broad literature mapping and identification of international protocols. Initially, three virtual meetings were held between June and August 2022 involving the CPG Development Group.

The first preliminary meeting focused on defining the scope of the CPG and identified priority topics for revision. During this phase, researchers presented a synthesized overview of the literature mapped, along with a comparative analysis of key recommendations from international CPGs and the current version of the national CPG.

The second meeting delved deeper into clinical aspects, including the discussion of eligibility criteria and key recommendations for diagnosis, treatment, and monitoring. During this meeting, medical specialists identified specific sections of the CPG for revision or rewriting, ensuring that the document reflects current clinical standards and practices [27].

The final meeting was dedicated to prioritizing PICO questions related to the technologies listed in the NHS that required evaluation in order to be included in the CPG. These technologies, either diagnostic tools or treatments, were typically identified through the initial literature search. This step ensured that the guidelines incorporate relevant, evidence-based technologies that enhance disease management and align with national healthcare priorities.

Subsequently, two parallel processes were initiated. While clinical specialists began revising the existing text and drafting the updated CPG, researchers undertook the HTA process for the prioritized technologies to be evaluated for reimbursement. This dual approach ensured that the CPG text and the economic and clinical assessments were developed concurrently, allowing a seamless integration of evidence-based recommendations and updated technological evaluations.

Health technology assessment

The National Committee for Health Technology Incorporation (Conitec) plays a critical role in the evaluation and recommendation of health technologies for inclusion in the NHS. Conitec is responsible for assessing the efficacy, safety, costeffectiveness, and budgetary impact of medicines, devices, and other health technologies proposed for use within the NHS, as well as to approve the publication of the CPGs.

For this reason, researchers conducted the entire HTA process following the methodological guidelines of the MoH [28–30], including systematic reviews, cost-effectiveness and budgetary impact analyses of technologies prioritized during the third meeting. These findings were then presented and discussed in plenary meetings of Conitec, which included representatives from various governmental and technical bodies. The commission deliberated on the evidence and formulated recommendations considering the benefits and harm, values and preferences, resource use, acceptability, cost and feasibility with all these aspects being comprehensively described in the published reports [31–33]. Although the assessment of Conitec and recommendation process was not conducted by an expert panel, the evaluation of health technologies considered key domains aligned with the GRADE Evidence to

Decision (EtD) framework. Therefore, the results are presented in accordance with this structure in the present article

All aspects related to evidence retrieval, economic evaluations, and the criteria considered by Conitec during plenary discussions for recommending listed health technologies are detailed in the respective recommendation reports, which are publicly available on the website of the agency [34]. These recommendation reports comprehensively document key methodological aspects, including search methods, evidence selection criteria, strengths and limitations of the evidence and the consideration of benefits and harm. These aspects have been summarized in Supplementary Table S2.

In parallel, clinical specialists drafted the CPG based on the discussions and agreements from the preliminary meetings. If Conitec recommended a technology for inclusion in the NHS, the CPG draft was updated to reflect the technologies listed. This included specifying criteria for patient inclusion and exclusion, usage recommendations, and monitoring requirements, ensuring that the CPG remained aligned with national healthcare priorities.

Public consultation and final recommendations

After the initial presentation of HTA in the plenary meetings of Conitec, preliminary recommendations underwent a public consultation phase to gather input from stakeholders and to capture the views and preferences of patients and the public, further ensuring that the final decision aligns with societal needs and values. During this phase, the public, including

patients, caregivers, healthcare professionals, and other stakeholders, were invited to provide feedback. Contributions could be submitted via an online platform, and all the input was systematically reviewed by the drafting group and presented to Conitec [35].

Conitec was also responsible for preliminary and final recommendations of the CPG, which also went through the process of evaluation, recommendation, and public consultations. The updated CPG was subsequently subjected to a Public Consultation (No. 25/2024) held from May 24 to June 12, 2024. A total of 184 contributions were received and reviewed, influencing the final recommendations of the CPG [36].

Recommendations

The target users of the CPG are the healthcare professionals involved in the care of SCD patients, particularly physicians and nurses working in primary and specialized care, including outpatient settings within the NHS.

SCD treatment requires coordinated actions by a multidisciplinary team for the prevention of crises, infection and complications, and for this reason, these CPG cover key aspects of screening, diagnosis, and disease identification, as well as prophylaxis and vaccination strategies. They also outline recommended actions and clinical approaches for healthcare professionals, patients, and families, addressing both pharmacological and non-pharmacological dimensions of comprehensive SCD care (Figure 1). Educating patients on self-care and family members on recognizing emergencies is of

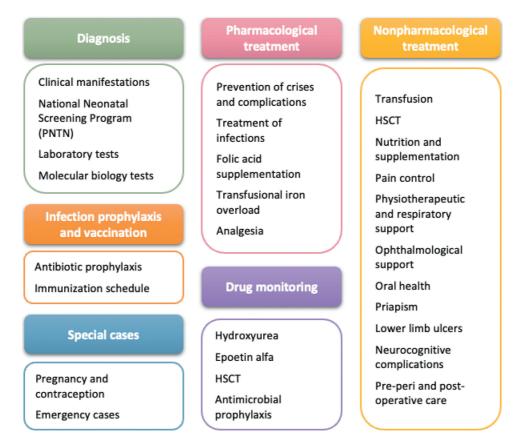


Figure 1 - Overview of major topics for recommendations in the updated national guidelines.

utmost importance to ensure early care, particularly for acute conditions such as fever and autosplenectomy.

Expected benefits from the treatments and monitoring outlined in these CPG include: (i) elimination or reduction of pain episodes; (ii) increased fetal hemoglobin (Hb F) production; (iii) slight increase in total Hb concentration; (iv) reduced acute chest syndrome (ACS) episodes; (v) reduced hospitalizations; (vi) reduced transfusions; (vii) regression or stabilization of organ or tissue damage; (viii) lower infection risk; and (ix) improved well-being, quality of life, and survival rates.

Diagnosis

Clinical presentation

SCD presents diverse clinical manifestations that aid in diagnosis, including signs of anemia (pallor, jaundice, fatigue, tachycardia, and heart murmurs), vaso-occlusive episodes, and renal complications that may progress to chronic kidney failure, with consequences such as glomerular hyperfiltration, hyposthenuria, and the need for hemodialysis [3–6]. Frequent infections, especially in young children, are the leading cause of mortality due to functional asplenia, which increases susceptibility to pathogens like *Streptococcus pneumoniae*. Severe crises, such as splenic sequestration, can result in hypovolemic shock and risk of death [37–39].

National neonatal screening program

SCD can be diagnosed at birth through the National Neonatal Screening Program (national policy for the newborn blood spot test) [40] or later in children and adults who did not have access to neonatal screening. It is recommended that detection and initiation of treatment occur before four months of age to ensure proper prevention of infections and other potentially fatal complications.

Laboratory tests

Hematological abnormalities can be observed in the complete blood count of SCD individuals, including reduced mean corpuscular volume and mean corpuscular hemoglobin concentration, as well as increased leukocyte counts and reticulocyte counts (ranging from 4-10 %). In optical microscopy of blood smears, additional features may include sickle-shaped RBCs, codocytes, hypochromia, microcytosis, polychromasia, Howell-Jolly bodies, and Heinz bodies. While these findings may assist in clinical suspicion for late diagnosis, they are not confirmatory of the disease.

Hemoglobin electrophoresis using isoelectric focusing or high-performance liquid chromatography is recommended for confirming the diagnosis, as both are accurate and usually do not require repeat testing. Conventional hemoglobin electrophoresis on agarose gel or cellulose acetate can also be used in adults. Inconclusive results from any method may be clarified with a complementary technique. For neonatal screening, repeat testing, if required, should use direct patient samples to prevent sample mix-ups.

Molecular biology tests

Molecular biology tests, such as polymerase chain reaction (PCR), should be incorporated into the diagnostic process to elucidate the genotype and identify polymorphisms, which are important for understanding the prognosis and severity of the disease [41].

The quantification of Hb A_2 and Hb F is recommended, as well as familial analysis of the parents and siblings, and the identification of alpha-thalassemia variants, haplotypes associated with the Hb S gene, and other Hb variants [14].

Primary healthcare services, upon receiving the newborn blood spot test result or the hemoglobin electrophoresis test result, must initiate care for SCD individuals. The diagnostic and referral workflow are represented in Supplementary Figure S1.

Infection prophylaxis and vaccination

Daily antibiotic prophylaxis is recommended for children with asplenia or hyposplenism until age five or at least one-year post-splenectomy. High-risk groups, including children up to 16 years, adults over 50, immunocompromised patients, and those with prior sepsis, should prioritize prophylaxis. For over five-year-old patients without high-risk features, 1-2 years of prophylaxis post-splenectomy may suffice [42,43].

Oral penicillin V is the preferred agent, with injectable penicillin G as an alternative when oral administration is not possible. For penicillin-allergic children, erythromycin is recommended. Amoxicillin and penicillin are first-line choices, while cephalosporins, fluoroquinolones, and macrolides are alternatives (Table 1).

Vaccination should align with the MoH schedule, including 23-valent pneumococcal polysaccharide vaccine (PPSV23) and 13-valent pneumococcal conjugate vaccine (PCV13) after age two, with a booster after 3-5 years [44]. An annual

Drug	Criteria	Dosage regimen
Oral penicillin V (phenoxymethylpenicillin)	Children under three years old or weighing up to 15 kg	125 mg (equivalent to 200,000 IU or 2.5 mL) every 12 h (250 mg/day)
	Children over three years old or weighing between 15 and 25 kg	250 mg (equivalent to 400,000 IU or 5 mL) every 12 h (500 mg/day)
Intramuscular benzathine penicillin G	Patients weighing up to 10 kg	300,000 IU every 4 weeks
(benzylpenicillin) *	Patients weighing between 10 and 20 kg	600,000 IU every four weeks
	Patients weighing over 20 kg	1,200,000 IU every four weeks
Oral erythromycin estolate	For penicillin allergy	20 mg/kg twice daily (40 mg/kg/day)

influenza vaccination is recommended for all ages, and COVID-19 vaccination is advised for children and adults with SCD [44].

Non-pharmacological treatment

Transfusion support

Transfusion support is essential for acute and chronic disease management, as well as during pregnancy and in perioperative periods [45,46]. Transfusion strategies include simple transfusion, which restores volume and oxygen capacity but risks volume and iron overload, and exchange transfusion, which removes sickled RBCs and replaces them with normal RBCs through erythrocytapheresis or partial manual exchange. Indications for each approach depend on the patient's clinical condition, including age, comorbidities, transfusion history, and treatment alternatives (Table 2) [45–47]. It is recommended to avoid unnecessary transfusions to reduce risks like alloimmunization and iron overload, and monitor serum ferritin levels, especially in irregular transfusions.

Phenotyping for ABO, Rh, and Kell antigens is required at diagnosis, with transfused RBCs matched to prevent sensitization. If antibodies develop, extended phenotyping is needed. Immunohematology tests are available through public blood centers, and confirmatory testing is advised after six months of age and before the first transfusion [47,48].

Leukoreduced, phenotyped, and sickle cell-free RBCs are recommended for all transfusions. In rare cases, RBCs with sickle cell trait may be used for unique antigen profiles. Exchange transfusions are preferred over simple transfusions when feasible to minimize iron overload and alloimmunization. For patients eligible for hematopoietic stem cell transplantation (HSCT), irradiated blood components should be used, following MoH guidelines [49].

Hematopoietic stem cell transplantation

Myeloablative allogeneic HSCT from an HLA-matched sibling or haploidentical donor, or using cord blood, peripheral blood, or bone marrow is recommended for treating SCD in patients with the Hb SS or Hb S β^0 genotypes experiencing severe vaso-occlusive complications despite HU treatment. HLA testing should begin at age five or upon the onset of severe complications to identify potential candidates. Transplantation age criteria are not explicitly defined, and the choice of stem cell source should balance donor and recipient risks [50,51].

Strategies for pain management

Families and individuals with SCD should prioritize hydration and avoid vaso-occlusive crisis triggers, such as temperature changes, infections, menstruation, pregnancy, and stress [52]. Non-pharmacological pain management includes psychosocial support, cognitive-behavioral therapy, relaxation techniques, and addressing contributing factors like stress, insomnia, and malnutrition. Individualized care plans are crucial for managing chronic and acute pain [53,54].

Physical activity is beneficial but requires medical guidance. Light exercises with gradual progression, stretching, and breaks every 20 min are recommended to avoid fatigue and pain. Activities like walking, swimming, and cycling at 50-90 % maximum heart rate for 20 min are ideal. Hydration, proper nutrition, and avoiding prolonged or intense workouts are essential [52,55,56].

Nutrition and supplementation

A balanced diet rich in vitamins A, C, and E, as well as minerals such as zinc and copper are recommended. Bone health should be evaluated regularly, including assessments of calcium intake and annual or semiannual vitamin D levels [57]. Bone density measurements should begin at age 12, with vitamin D assessments repeated annually and bone density testing every three years. Supplementation with vitamin D and calcium can support the bone metabolism, helping to prevent growth and maturation delays in children and adolescents with SCD [58,59].

Physiotherapeutic and respiratory support

Aerobic kinesiotherapy, analgesic electrotherapy, and electroacupuncture may benefit SCD patients. Continuous incentive spirometry is recommended during hospital stays or when ACS develops [60]. For patients with increasing oxygen needs or reduced respiratory effort, non-invasive ventilation techniques like Continuous/Bilevel Positive Airway Pressure (CPAP/BiPAP) can be beneficial [61,62].

Oral health

Periodic dental evaluations are essential for SCD patients. Preventive care, monitoring, and treatment of maxillofacial alterations, such as malocclusion, help reduce disease-associated complications [63,64].

Table 2 - Indications for each type of transfusion.

Simple transfusion

- Aplastic crisis and pancytopenia;
- Acute and progressive infections with a hemoglobin drop of 1.5 g/dL from baseline or Hb below 7 g/dL;
- Acute hepatic or splenic sequestration;
- Pregnancy
- Acute stroke when exchange transfusion is unavailable;
- Acute chest syndrome (ACS) with increasing oxygen requirement to maintain saturation above 95 %.

Exchange transfusion

- Drop in baseline Hb with symptomatic anemia or acute Hb drop without reticulocytosis;
- ACS, with transfusion continuing for at least six months postepisode;
- Frequent and severe pain crises;
- Acute stroke or cerebral infarction;
- Transient ischemic attack (TIA);
- Multi-organ failure;
- Priapism unresponsive to urological procedures;
- Increased velocity on transcranial Doppler;
- Preparation for major surgeries or procedures involving vital organs.

Ophthalmological support

Patients with the Hb SS, Hb S β^0 , and Hb SC genotypes are most significantly affected, particularly within the 20-39 year age group; therefore, annual ophthalmological monitoring should begin at age ten and continue throughout adulthood [65].

Priapism

Prophylactic measures for priapism include increased fluid intake and frequent bladder emptying. For episodes under two hours, hydration, bathing, walking, warm compresses, and analgesia are recommended. Priapism lasting more than 2-4 h is a medical emergency requiring immediate evaluation, hydration, analgesia, and a urological consultation [66,67].

Leg ulcers

Wound care involves keeping the skin hydrated and using appropriate footwear. Ulcers should be cleaned with 4 % sodium chloride solution using specific techniques based on wound type (e.g., jet irrigation for clean wounds, mechanical cleaning with dry gauze for infected wounds or wounds with debris). Dexamethasone cream and mineral oil are recommended for perilesional skin, with mineral oil use continuing post-healing. The tetanus vaccination should be updated [68].

Neurocognitive complications

Stroke prevention includes annual transcranial Doppler ultrasound for patients aged 2-16 years to assess risk [69]. Increased cerebral artery velocity indicates a higher stroke risk, requiring chronic transfusion therapy to lower Hb S levels. Selective screening with cerebral magnetic resonance angiography may also be needed.

Silent strokes, defined as lesions visible on at least two planes by T2-weighted magnetic resonance imaging (MRI), measuring at least 3 mm in the largest linear dimension [70], without associated neurological findings, can be detected early by cognitive tests conducted by qualified psychology professionals, and should be included in care for children and adolescents with SCD, enabling measures to mitigate these consequences [71–74].

Surgical procedures in sickle cell disease

SCD patients require special care before, during, and after surgical procedures [75], as presented in Table 3.

Pharmacological treatment

Four research questions for listing technologies were prioritized for the updated CPG, for which the working group developed recommendation reports (Table 4). As a result of the HTA process and Conitec deliberation, epoetin alfa [33] and presentation of HU in 100 mg tablets [32] were listed in the NHS. Additionally, the criteria for the use of HU were expanded [31], allowing broader access to treatment for SCD patients (Supplementary Table S2). Crizanlizumab was also prioritized for assessment; however, its evaluation was suspended, and the assessment report did not proceed to the plenary deliberation of Conitec following the cancellation of its marketing authorization by National Health Surveillance Agency (Anvisa) on October 30, 2023. The eligibility criteria for using listed treatments were established in accordance with the listing recommendations of Conitec, and the original text was revised to prevent access barriers. (Supplementary Table S3).

Prevention of crises and complications

HU is the cornerstone of SCD management and the most effective pharmacological therapy, requiring regular monitoring due to a risk of hematologic toxicity albeit low [76,77]. While HU has shown in-vitro carcinogenic and teratogenic potential, this has not been confirmed in vivo [78]. Treatment should continue indefinitely if clinical and laboratory responses are achieved [79]. For about 25 % of patients with an unsatisfactory response, discontinuation may be considered after two years. Treatment adherence should be reassessed to optimize outcomes, with healthcare teams emphasizing the benefits of HU to the patient.

The recommended starting dose of HU is 15 mg/kg/day, taken orally as a single daily dose. The dose can be increased by 5 mg/kg/day every four weeks, up to a maximum of 35 mg/kg/day or until hematological toxicity or serious adverse effects occur. For children weighing up to 25 kg, the 100 mg coated tablet is advised.

Recombinant human epoetin alfa is recommended for Hb SS and Hb $S\beta^0$ patients on HU who experience declining hemoglobin levels or frequent transfusion needs. The suggested dose is 12,000 IU per week, divided into three

Table 3 - Recommended care for patients with sickle cell disease undergoing surgical procedures. Preoperative care Perioperative care Postoperative care • Clinical evaluation; • Maintaining a moderate temperature in the • Immediate postoperative oxygenation; • Complete blood count and coagulation tests; · Pulse oximetry monitoring; operating room; · Glucose, urea, creatinine, liver function tests, • 50 % oxygenation combined with the anes-· Parenteral hydration; • Respiratory physiotherapy. and urinalysis; thetic agent; • Electrocardiogram (ECG) for surgical cardiac · Clinical monitoring (ECG, blood pressure, pulse, risk assessment; temperature, urinary output); · Chest X-ray; · Laboratory monitoring (serum electrolytes, • Hb A and Hb S quantification; inspired O² concentration, pulse oximetry, or · Pulse oximetry and respiratory physiotherarterial blood gas analysis). apy evaluation; • Transfusion preparation and immuno-hematological testing with red blood cell phenotyping: • Full hydration for 12 hours preoperatively

Technology and	Clinical evidence*	Economic assessments	Coverage decision
research question			S
Epoetin alfa for reduced kidney function	Eight observational studies analyzed before/after clinical and hematological outcomes. Epoetin alfa use significantly increased: • Hb levels (4-32.8 % improvement, p<0.05) (certainty of evidence: VERY LOW) • Hb F levels (5.2-17.1 % increase, p<0.05), and reduced transfusion requirements (quantitative data not reported) (certainty of evidence: VERY LOW) No increase in vaso-occlusive crises (VOC) or venous thromboembolism (VTE) was observed, suggesting safety (quantitative data not reported) (certainty of evidence: VERY LOW) For a renal impairment subgroup (n = 4), Hb concentration improved by 29 % (certainty of evidence: VERY LOW)	A CEA using a one-year decision tree model evaluated its impact on reducing transfusion needs. Epoetin alfa showed modest clinical benefit (incremental 0.033 QALY) and cost savings of BRL 11,564. Sensitivity analyses confirmed epoetin alpha as a dominant option. The eligible population for the BIA was estimated at 5,274 patients annually. With a 10-50 % market share, direct acquisition costs was BRL 806,129 in year one to BRL 4.8 million in year five. Over five years, a cumulative savings of BRL 96.5 million, due to reduced transfusion-related costs, including iron chelation therapy.	After public consultation, Conitec members unanimously recommended incorporating epoetin alfa into the NHS for treating SCD patients with renal impairment and worsening hemoglobin levels, following the Ministry of Health's clinical protocol. The decision was formalized under Resolution No. 871/2024.
Hydroxyurea to nine- month-old children	A randomized clinical trial (BABY HUG - NCT00006400) and three non-comparative observational studies were included as clinical evidence. Hydroxyurea showed a significant impact on the following efficacy outcomes compared to placebo: • Hb levels (difference of 0.9; 95 % CI: 0.5-1.3; p<0.001) (certainty of evidence: MODERATE) • Hb F levels (difference of 6.7 %; 95 % CI: 4.8-8.7 %; p<0.001) (certainty of evidence: MODERATE) • Pain (HR 0.59; 95 % CI: 0.42-0.83; p = 0.002) (certainty of evidence: MODERATE) • Acute chest syndrome (HR 0.36; 95 % CI: 0.15-0.87; p = 0.02) (certainty of evidence: MODERATE) • Transfusion requirements (HR: 0.55; 95 % CI: 0.32-0.96; p = 0.03) (certainty of evidence: MODERATE) No significant difference was found for hospitalizations (HR: 0.73; 95 % CI: 0.53-1.00; p = 0.05) (certainty of evidence: MODERATE)	In the CEA, hydroxyurea was costeffective when considering QALY and may be cost-effective (ICER – BRL 12,258 per QALY gained). In BIA, it was estimated that the 5-year cumulative impact for the adoption of hydroxyurea for patients aged 9-24 months could range from BRL 105,556 to BRL 484,805.	After a public consultation, the Conitec members unanimously recommended incorporating hydroxyurea in the treatment of patients with sickle cell SCD (Hb SS, Hb S β 0, severe Hb S β +, and Hb SD Punjab), aged 9-2 months, without symptoms or complications, considering the clinical benefits and favorable budget impact.
Hydroxyurea 100 mg tablet and 1000 mg tablet	It was considered that the new formulations (100 mg and 1000 mg) are bioequivalent or similar to the 500 mg formulation, and, for this reason, only economic only viability assessment was made. Certainty of the evidence was not assessed since the studies were based on bioequivalence analyses.	In the BIA, two populations were considered: individuals >9 months (17,400 per year) and 9 months to 12 years (5,000 per year). With a 10-50 % market share, the 5-year impact would be approximately BRL 396.7 million and BRL 43 million, respectively.	After public consultation, the members of Conitec unanimously recommended the incorporation of 100 mg hydroxyurea and not to incorporate 1000 mg hydroxyurea for the treatment of patients with SCD aged at least 9 months. The Committee maintained this decision, considering that the potential clinical benefits of using the 1000 mg form would not justify its costs.

BIA: budget impact analysis; BRL: Brazilian Reais; CEA: cost-effectiveness analysis Hb: Hemoglobin; Hb F: Fetal hemoglobin; ICER: incremental cost-effectiveness ratio; 95 % CI: 95 % confidence interval; HR: Hazard ratio.

^{*} Further aspects of the GRADE Evidence-to-Decision (EtD) framework, considered in the recommendations reports and discussed during the meetings of Conitec are presented in the Supplementary Material.

administrations of 4,000 IU each, delivered via subcutaneous or intravenous injection [80,81].

Treatment of Infections

Prompt recognition and treatment of infections are critical due to the high risk of septic shock. Fever is an emergency, especially in under three-year-old children with temperatures above 38.2°C. Signs of infection require immediate transport to an emergency facility and a Reference Center notification. Diagnostic tests include blood count, reticulocytes, urinalysis, c-reactive protein, cultures, chest X-ray, and lumbar puncture if suspicion of central nervous system infection. Empirical antibiotics for encapsulated organisms should start immediately for undiagnosed febrile cases. Antibiotic selection varies by infection type:

- ACS: Add macrolides (e.g., clarithromycin, azithromycin).
- Meningitis: Use CNS-penetrating antibiotics (e.g., ceftriaxone).
- Mycoplasma pneumoniae: Add erythromycin, clarithromycin, or azithromycin.
- Osteomyelitis: Provide 4-6 weeks of antibiotics covering S. aureus and Salmonella spp. along with hydration and analgesia.

SCD patients with COVID-19 require close monitoring, hospitalization at the first complication sign, and careful management even with mild symptoms [82].

Folic acid supplementation

Folic acid is recommended for low serum folate levels or specific conditions such as pregnancy, with a dosage of 1 mg/day. Serum folic acid levels should be maintained below 17 ng/mL. If therapeutic monitoring is unavailable, dietary guidance is advised alongside supplementation. For children up to 1 year or 10 kg, a half tablet (2.5 mg) three times per week is recommended. For patients above this age or weight, one tablet (5 mg) three times per week is advised.

Transfusional iron overload

Treatment should follow the current iron overload CPG of the MoH [83].

Analgesia

Pain management during vaso-occlusive crises requires fixed-dose analgesics based on intensity, guided by pain scales which can direct treatment, monitor responses, and predict hospitalization duration [84,85]. Treatment must be individualized to avoid opioid toxicity when alternative therapies are more appropriate, following the current National CPG for Chronic Pain [86]. Chronic pain from avascular necrosis, compression fractures, or arthropathies may require surgical interventions. Menstrual pain may benefit from hormonal therapies or NSAIDs, while priapism requires adequate analgesia pending a urological evaluation [87].

Iron supplementation

Iron supplementation is not routinely recommended and should only address specific deficiencies identified by ferritin, iron, and transferrin levels, with treatment limited to correcting the deficiency [88].

Special cases

Pregnancy and contraception

Pregnant women with SCD face higher risks of placental dysfunction, infections, preterm birth, and perinatal mortality. Untreated bacteriuria can cause intrauterine growth restriction (IUGR) and preterm labor, while anemia may worsen due to increased blood demand, hemodilution, or deficiencies. Women should be informed about risks such as IUGR, preeclampsia, eclampsia, infections, thromboembolism, gestational diabetes, and preterm delivery. Miscarriages are more common, especially in Hb SS patients, and delayed puberty may postpone pregnancy.

High-risk obstetric care, including ultrasound, fetal biophysical profile, umbilical Doppler, and cesarean delivery, when necessary, is essential to reduce perinatal mortality. Regular prenatal visits, hydration, and timely management of fever or pain crises are critical. Pregnant women must interrupt unsafe medications such as iron chelators and discontinue HU three months before conception. Folic acid (5 mg/day) is recommended during pregnancy.

Pain crises, more frequent late in pregnancy, are treated similarly to non-pregnant patients. NSAIDs may be used between 18-30 weeks but should be avoided after 30 weeks to prevent ductal closure. Routine monthly transfusions are reserved for severe cases, while intermittent transfusions may address significant anemia (<7 g/dL).

Initial care includes clinical and obstetric history, paternal Hb electrophoresis, and comprehensive lab tests. Monitoring at each trimester and updating maternal immunizations are recommended. Maternal assessments should cover nutrition, hydration, blood pressure, weight gain, and cervical evaluation

Progestogen-only contraceptives, like medroxyprogesterone acetate, are preferred due to lower thrombosis risk. Copper intrauterine devices are an option but require monitoring for increased menstrual flow. Bone density should be evaluated before starting progestogen-based contraceptives and reassessed every two years.

Emergency cases

ACS is identified by new pulmonary infiltrates on chest X-ray and symptoms like chest pain, cough, fever, hypoxemia, or respiratory distress. Urgent hospitalization is required, with intensive care unit transfer if oxygen saturation falls below 93 %. Management includes oxygen therapy to maintain saturation \geq 93 %, monitoring blood counts, reticulocytes, blood cultures, and chest X-rays. Bronchodilators and respiratory physiotherapy may be used. Fluid management should avoid overhydration to prevent pulmonary edema. Simple RBC transfusion is indicated if Hb drops by \geq 1.5 g/dL below baseline. For severe or rapidly progressing cases, exchange transfusion or urgent simple transfusion is recommended. Postrecovery, exchange transfusion should continue for at least six months [89].

Splenic Sequestration progresses rapidly and requires immediate hospitalization and notification of a reference center. Families should monitor spleen size to detect recurrence, which occurs in up to 50 % of cases [90]. Treatment involves IV hydration (10-15 mL/kg plasma expanders or 40-100 mL/kg

saline over two hours), bed rest, oxygen therapy, and leg elevation. RBC transfusion (10 mL/kg) may be needed to achieve Hb levels of 6-7 g/dL, with careful volume monitoring post-crisis to prevent hyperviscosity. Splenectomy is often performed after the first acute event in over five-year-old children to prevent recurrence.

Hyper-Hemolysis Syndrome (HHS) is a severe hemolysis exacerbation following transfusion, marked by a rapid Hb drop below pre-transfusion levels. Immediate treatment includes hydration and immunosuppressive therapy with glucocorticoids (1-4 mg/kg/day prednisone or equivalent methylprednisolone), IV immunoglobulin (0.4-1 g/kg/day for 3-5 days), or both. Therapy should be individualized, with prompt intervention essential to prevent fatal outcomes [91,92].

Monitoring

Hydroxyurea

Monitoring HU in SCD aims to ensure clinical effectiveness and safety. Initial tests include Hb electrophoresis, Hb F levels, complete blood count (CBC), liver and kidney function tests, and pregnancy testing. During treatment, Hb F, CBC, and liver and kidney function should be monitored periodically to guide dose adjustments (Supplementary Table S4).

If toxicity occurs, HU should be discontinued until recovery and resumed at a dose 5 mg/kg/day lower than the previous dose. Recurrent toxicity at the same dose defines the maximum tolerated dose. HU dose must be adjusted for renal impairment based on creatinine clearance (if 10-50 mL/min, administer 50 % of the dose; if less than 10 mL/min, administer 20 % of the dose) [93]. Myelosuppression is the primary dose-limiting toxicity. Toxicity levels and frequency of recommended tests are described in Supplementary Table S5 [94–97]. Severe mucocutaneous reactions require discontinuation, while long-term use does not affect growth or development in children with SCD.

Lactating patients should decide between discontinuing breastfeeding or treatment, considering the benefits for the mother. However, pharmacokinetic studies have reported low HU transfer to breast milk, suggesting its use may be acceptable if breastfeeding occurs at least three hours after the daily dose [98]. Therefore, the risks and benefits should be carefully assessed in these cases. Women of childbearing age should use contraception. HIV or hepatitis patients require close monitoring for potential complications.

Epoetin alfa

Hemoglobin levels should be monitored weekly until stabilization, then monthly for six months, and every three months thereafter. Epoetin alfa should be discontinued if no reduction in transfusion needs or failure to achieve target Hb levels (≥ 8.5 g/dL or an increase ≥ 1.5 g/dL from baseline) occurs within six months [33]. Otherwise, treatment may continue indefinitely to reduce transfusion dependency.

Hematopoietic stem cell transplantation

HU should be discontinued four weeks before starting conditioning and reintroduced only in cases of engraftment failure.

Antimicrobial prophylaxis

Prophylactic phenoxymethylpenicillin (penicillin V) should be continued from diagnosis until age 5. Asplenia is not a contraindication for vaccinations, including live vaccines. No evidence suggests vaccine-related complications in SCD patients on HU, and the benefits of reducing infections outweigh potential risks [99].

Transition process

Adolescence is a period of considerable vulnerability, as patients face challenges inherent to their age, considering social, physical, and psychological development. For people with SCD, this stage of life is often marked by a shift in disease behavior, with increased severity observed in some individuals. This progression is largely attributed to the underlying biology and pathophysiology of SCD, which tends to worsen due to the cumulative burden of organ damage over time. The absence of a structured transition process can result in disruptions in care, with serious consequences such as increased use of emergency services, deterioration of organ function, and early death. Therefore, preparation, transfer, and integration are essential in the transition process, which should occur in an organized and planned manner [100,101].

A planned transition is considered a quality standard in services for patients with chronic conditions. It involves not just the transfer of care - understood as the act of moving the patient from one institution or care team to another - but a broader, dynamic, and complex process. This includes evaluating the acquisition of self-management skills and implementing educational strategies and appropriate healthcare resources [101].

The main goals of a transition clinic are: (1) to improve the capacity of adolescents and young adults, with or without special healthcare needs, to manage their own care and use health services effectively; and (2) to ensure an organized process within pediatric and adult care teams for transition preparation, transfer, and integration into adult-centered healthcare. The stages of this process, clearly outlined in the updated CPG (Supplementary Figure S2), should guide services aiming to address this important gap.

Conclusion

The updated national Guidelines for SCD is publicly available on the MoH website and has been officially published through a Joint Ordinance (SAES/SECTICS No. 16, of November 1, 2024), ensuring accessibility of healthcare professionals, patients and all the population [102]. In addition to these dissemination efforts, the present article aims to contribute to the international discussion on SCD management, describing the Brazilian approach for evidence-based guideline development.

Regarding evaluation of implementation, no formal assessment of facilitators and barriers was planned within this update. However, it is important to emphasize that the guidelines should not be regarded as a standalone document. Given the decentralized structure of the NHS, states and municipalities have the autonomy to develop complementary

tools and local protocols, aligning with the national guidelines while addressing regional healthcare needs and operational constraints. Future studies assessing the real-world application of these recommendations could provide valuable insights to optimize implementation strategies and improve patient outcomes.

Funding source

This guideline updating process was funded through a partnership with the Brazilian Ministry of Health via the Unified Health System (SUS) Institutional Development Support Program (PROADI-SUS). This manuscript was prepared by the Health Technology Assessment Unit (UATS) of the Hospital Alemão Oswaldo Cruz (HAOC).

Contribution author

- 1) Conception and design of the study: LPG, LAO, RCL, HAOJ
- Acquisition of data, or analysis and interpretation of data: LPG, MMF, LAO, CL, KNTM, SS, RCL, MRKR, DFG
- 3) Drafting the article: LPG, MMF, RCL, LAO
- 4) Revising it critically for important intellectual content: RCL, LAO, HAOJ, MCLSM
- 5) Final approval of the version to be submitted: LPG, MMF, RCL, LAO, HAOJ, CL, KNTM, SS, MRKR, DFG, MCLSM

Declaration of generative ai and ai-assisted technologies in the writing process

During the preparation of this work the authors used ChatGPT in order to improve language and readability. After using this tool/service, all authors reviewed and edited the content as needed and take full responsibility for the content of the publication.

Conflicts of interest

The authors declare that they have no conflicts of interest to disclose.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.htct.2025.103964.

REFERENCES

 Sundd P, Gladwin MT, Novelli EM. Pathophysiology of Sickle cell disease. Annual Rev Pathol: Mechan Disease. 2019;14 (1):263–92. https://doi.org/10.1146/annurev-pathmechdis-012418-012838.

- Zago MA, Pinto ACS. Fisiopatologia das doenças falciformes: da mutação genética à insuficiência de múltiplos órgãos. Rev Bras Hematol Hemoter. 2007;29(3):207–14. https://doi.org/ 10.1590/S1516-84842007000300003.
- Miller AC, Gladwin MT. Pulmonary complications of sickle cell disease. Am J Respir Crit Care Med. 2012;185(11):1154. https://doi.org/10.1164/RCCM.201111-2082CI.
- Hebbel RP, Osarogiagbon R, Kaul D. The endothelial biology of sickle cell disease: inflammation and a chronic vasculopathy. Microcirculation. 2004;11(2):129–51. https://doi.org/ 10.1080/10739680490278402.
- Wood KC, Granger DN. Sickle cell disease: role of reactive oxygen and nitrogen metabolites. Clin Exp Pharmacol Physiol. 2007;34 (9):926–32. https://doi.org/10.1111/J.1440-1681.2007.04639.X.
- Kato GJ, Gladwin MT, Steinberg MH. Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev. 2007;21(1):37– 47. https://doi.org/10.1016/J.BLRE.2006.07.001.
- WHO. World Health Organization. Regional Office for Africa;
 Sickle Cell Disease. https://www.afro.who.int/health-topics/sickle-cell-disease. Accessed on: April 14.
- Mota C, Trad LAB, Dikomitis L. Sickle cell disease in Bahia, Brazil: the social production of health policies and institutional neglect. Societies. 2022;12(4):108. https://doi.org/ 10.3390/soc12040108.
- Centers for Disease Control and Prevention. Data & Statistics on Sickle Cell Disease | CDC. https://www.cdc.gov/ncbddd/sicklecell/ data.html. Published 2022. Accessed on: April 14, 2023.
- Martins MMF, Teixeira MCP. Análise dos gastos das internações hospitalares por anemia falciforme no estado da Bahia. Cad Saude Colet. 2017;25(1):24–30. https://doi.org/ 10.1590/1414-462×201700010209.
- Cançado RD, Jesus JA. A doença falciforme no Brasil. Rev Bras Hematol Hemoter. 2007;29(3). https://doi.org/10.1590/S1516-84842007000300002.
- 12. Brasil. Ministério da Saúde. NOTA TÉCNICA No 29/2022-CGSH/DAET/SAES/MS. Secretaria de Atenção Especializada à Saúde Departamento de Atenção Especializada e Temática Coordenação-Geral de Sangue e Hemoderivados. 2022.
- 13. Silva-Pinto AC, Costa FF, Gualandro SFM, et al. Economic burden of sickle cell disease in Brazil. PLoS One. 2022;17(6 June):1–15. https://doi.org/10.1371/journal.pone.0269703.
- 14. Anvisa. Agência Nacional de Vigilância Sanitária. Manual de Diagnóstico e Tratamento de Doenças Falciformes. https:// bvsms.saude.gov.br/bvs/publicacoes/anvisa/diagnostico.pdf. Published 2002. Accessed on: April 18, 2023.
- Vilela RB, Silva MA. Doença falciforme: as faces do estigma e do preconceito na construção da vulnerabilidade social. 2021:1-8. doi: 10.5020/18061230.2021.13432
- Figueiró AVM, Ribeiro RLR. Vivência do preconceito racial e de classe na doença falciforme. Saúde Soc. 2017;26(1):88–99. https://doi.org/10.1590/S0104-12902017160873.
- Arduini GAO, Rodrigues LP. Trovó de Marqui AB. Mortality by sickle cell disease in Brazil. Rev Bras Hematol Hemoter. 2017;39(1):52–6. https://doi.org/10.1016/j.bjhh.2016.09.008.
- Silva-Pinto AC, Costa FF, Gualandro SFM, et al. Economic burden of sickle cell disease in Brazil. PLoS One. 2022;17(6 June). https://doi.org/10.1371/journal.pone.0269703.
- Power-Hays A, McGann PT. When actions speak louder than words — Racism and sickle cell disease. New England J Med. 2020;383(20):1902–3. https://doi.org/10.1056/nejmp2022125.
- Smith WR, Valrie C, Sisler I. Structural racism and impact on sickle cell disease: sickle cell lives matter. Hematol Oncol Clin North Am. 2022;36(6):1063–76. https://doi.org/10.1016/j. hoc.2022.08.008.
- da Silva Araújo A, Silva Pinto AC, de Castro Lobo CL, et al. Sickle cell disease in Brazil: current management. Hemoglobin. 2024. https://doi.org/10.1080/03630269.2024.2344790.

- Klugar M, Lotfi T, Darzi AJ, et al. GRADE guidance 39: using GRADE-ADOLOPMENT to adopt, adapt or create contextualized recommendations from source guidelines and evidence syntheses. J Clin Epidemiol. 2024;174:111494. https://doi.org/ 10.1016/J.JCLINEPI.2024.111494.
- 23. Brasil. Ministério da Saúde. Protocolo Clínico e Diretrizes Terapêuticas da Doença Falciforme. Portaria Conjunta; 2018 no5.
- 24. Brasil, Ministério da Saúde. Diretrizes metodológicas: Elaboração de diretrizes clínicas. Secretaria de Ciência, Tecnologia e Insumos Estratégicos, Departamento de Gestão e Incorporação de Tecnologias em Saúde; 2023 www.gov.br/conitec/pt-br/ Accessed on: February 23, 2025.
- 25. Rating quality of evidence and strength of recommendations: GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ: British Med J. 2008;336(7650):924.
- 26. Brasil. Ministério da Saúde. Portaria nº 27, de 12 de junho de 2015. Aprova o Fluxo de trabalho para elaboração e atualização dos Protocolos Clínicos e Diretrizes Terapêuticas no âmbito da Comissão Nacional de Incorporação de Tecnologias no Sistema Único de Saúde CONITEC. https://bvsms.saude.gov.br/bvs/saudelegis/sctie/2015/prt0027_12_06_2015. html. Published 2015. Accessed on: February 23, 2025.
- 27. Brasil, Ministério da Saúde. Guia de Elaboração: escopo para Protocolos Clínicos e Diretrizes Terapêuticas. Secretaria de Ciência, Tecnologia e Insumos Estratégicos, Departamento de Gestão e Incorporação de Tecnologias em Saúde; 2019. https://www.gov.br/conitec/pt-br/midias/artigos_publicacoes/diretrizes/guia_elaboracao_escopo_final_02-05-2019-1. pdf/view. Accessed on: January 1, 2025.
- 28. Brasil, Ministério da Saúde. Diretrizes Metodológicas: Elaboração de Diretrizes Clínicas. Brasília DF: Secretaria de Ciência, Tecnologia e Insumos Estratégicos, Departamento de Gestão e Incorporação de Tecnologias em Saúde; 2023. https://bvsms.saude.gov.br/bvs/publicacoes/diretrizes_metodologicas_elaboracao_metodologicas_1ed.pdf.
- 29. Brasil, Ministério da Saúde. Diretrizes Metodológicas: Elaboração de Pareceres Técnico-Científicos. 1a edição. Brasília DF: Secretaria de Ciência, Tecnologia e Insumos Estratégicos, Departamento de Gestão e Incorporação de Tecnologias em Saúde; 2021.
- Brasil, Ministério da Saúde. Diretrizes Metodológicas: Elaboração de Revisão Sistemática e Meta-Análise de Ensaios Clínicos Randomizados. 2021.
- 31. Brasil, Ministério da Saúde, Secretaria de Ciência. Relatório de Recomendação No 873 Hidroxiureia para o tratamento de pacientes com doença falciforme (SS, Sbeta0 e SD Punjab), entre 9 e 24 meses de idade, sem sintomas e complicações. Tecnologia e Insumos Estratégicos, Departamento de Gestão e Incorporação de Tecnologias em Saúde; 2025. https://www.gov.br/conitec/pt-br/midias/relatorios/2024/20240307_Relatrio_873_Hidroxiureia500mg_DOENAFALCIFORME.pdf. Published 2024. Accessed on: February 23.
- 32. Brasil, Ministério da Saúde, Secretaria de Ciência. Relatório de Recomendação No 872 Hidroxiureia 100 mg e 1000 mg para o tratamento de pacientes com doença falciforme com pelo menos 9 meses de idade. Tecnologia e Insumos Estratégicos, Departamento de Gestão e Incorporação de Tecnologias em Saúde; 2025. https://www.gov.br/conitec/pt-br/midias/relatorios/2024/20240307_Relatrio_872_Hidroxiureia_100_1000_DOENAFALCIFORMEPDF.pdf. Published 2024. Accessed on: February 23.
- 33. Brasil, Ministério da Saúde. Relatório de Recomendação No 874 Alfaepoetina para o tratamento de pacientes com doença falciforme apresentando declínio da função renal e piora dos níveis de hemoglobina. Secretaria de Ciência, Tecnologia e Insumos Estratégicos, Departamento de Gestão e Incorporação de Tecnologias em Saúde; 2025. https://www.gov.br/conitec/pt-br/midias/

- relatorios/2024/alfaepoetina-para-o-tratamento-de-pacientes-com-doenca-falciforme-apresentando-declinio-da-funcao-renal-e-piora-dos-niveis-de-hemoglobina.pdf. Published 2024. Accessed on: February 23.
- 34. Brasil. Ministério da Saúde. Recomendações da Conitec. Comissão Nacional de Incorporação de Tecnologias no Sistema Único de Saúde CONITEC; 2025. https://www.gov.br/conitec/pt-br/assuntos/avaliacao-de-tecnologias-em-saude/recomendacoesconitec. Published 2024. Accessed on: February 25.
- 35. Brasil. Ministério da Saúde. Consultas públicas. 2025. https://www.gov.br/conitec/pt-br/assuntos/participacao-social/consultas-publicas. Accessed on: January 1.
- 36. Brasil. Ministério da Saúde. Contribuições da Consulta Pública Protocolo Clínico e Diretrizes Terapêuticas da Doença Falciforme Conitec. 2024. https://www.gov.br/conitec/pt-br/midias/consultas/contribuicoes/2024/contribuicoes-da-cp-25-de-2024-pcdt-dadoenca-falciforme. Accessed on: January 1, 2025.
- Zarkowsky H, Gallagher D, Gill F, et al. Bacteremia in sickle hemoglobinopathies. J Pediatr. 1986;109(4):579–85. https:// doi.org/10.1016/S0022-3476(86)80216-5.
- 38. Barrett-Connor E. Bacterial infection and sickle cell anemia. An analysis of 250 infections in 166 patients and a review of the literature. Medicine (Baltimore). 1971;50(2):97–112.
- Dos Santos ACV, Eugênio FMC. Infecção por pneumococo em crianças portadoras de anemia falciforme. Revista Multidisciplinar em Saúde; 2022. p. 224–31. https://doi.org/10.51161/rems/3675.
- Brasil. Ministério da Saúde. Manual de Normas Técnicas e Rotinas Operacionais do Programa Nacional de Triagem Neonatal. 2002.
- Zanatta T, Manfredini V. Comparação entre métodos laboratoriais de diagnóstico de Doenças Falciformes Resumo summary. :94-2009.
- Rankine-Mullings AE, Owusu-Ofori S. Prophylactic antibiotics for preventing pneumococcal infection in children with sickle cell disease. Cochrane Database of Systematic Reviews. 2017. https:// doi.org/10.1002/14651858.CD003427.pub4.
- 43. Davies JM, Lewis MPN, Wimperis J, Rafi I, Ladhani S, Bolton-Maggs PHB. Review of guidelines for the prevention and treatment of infection in patients with an absent or dysfunctional spleen: prepared on behalf of the British Committee for Standards in Haematology by a Working Party of the Haemato-Oncology Task Force. Br J Haematol. 2011;155(3):308–17. https://doi.org/10.1111/j.1365-2141.2011.08843.x.
- 44. Brasil. Ministério da Saúde. Manual dos centros de referência para imunobiológicos especiais. 2023. 60 edition. https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/guias-e-manuais/2024/manual-dos-centros-de-referencia-para-imunobiologicos-especiais-6a-edicao. Accessed on: January 1, 2025.
- 45. Compernolle V, Chou ST, Tanael S, et al. Red blood cell specifications for patients with hemoglobinopathies: a systematic review and guideline. Transfusion (Paris). 2018;58(6):1555–66. https://doi.org/10.1111/trf.14611.
- 46. Chou ST, Alsawas M, Fasano RM, et al. American society of hematology 2020 guidelines for sickle cell disease: transfusion support. Blood Adv. 2020;4(2):327–55. https://doi.org/ 10.1182/BLOODADVANCES.2019001143.
- 47. Linder GE, Chou ST. Red cell transfusion and alloimmunization in sickle cell disease. Haematologica. 2021;106(7):1805–15. https://doi.org/10.3324/haematol.2020.270546.
- 48. Davis BA, Allard S, Qureshi A, et al. Guidelines on red cell transfusion in sickle cell disease part II: indications for transfusion. Br J Haematol. 2017;176(2):192–209. https://doi.org/10.1111/bjh.14383.
- 49. Brasil. Ministério da Saúde. Guia para o uso de Hemocomponentes. 2015;2 editions. https://bvsms.saude.gov.br/bvs/publicacoes/guia_uso_hemocomponentes_2ed.pdf. Accessed on: January 1, 2025.

- 50. Brasil. Ministério da Saúde. Portaria n° 30 de 30 de junho de 2015. Relatório de Recomendação no. 151 da Comissão Nacional de Incorporação de Tecnologias em Saúde CONITEC. Transplante de células-tronco hematopoéticas para o tratamento de doença falciforme. https://www.gov.br/conitec/pt-br/midias/incorporados/transplante_doenafalciforme_final.pdf. Published 2015. Accessed on: April 20, 2023.
- Brazauskas R, Scigliuolo GM, Wang HL, et al. Risk score to predict event-free survival after hematopoietic cell transplant for sickle cell disease. Blood. 2020;136(5):623–6. https:// doi.org/10.1182/blood.2020005687.
- 52. CDC. Living Well with Sickle Cell Disease Self-Care Toolkit. National Center on Birth Defects and Developmental Disabilities. Division of Blood Disorders; 2023.
- 53. Raphael JL, Oyeku SO. Sickle cell disease pain management and the medical home. Hematology. 2013;2013(1):433–8. https://doi.org/10.1182/asheducation-2013.1.433.
- 54. Moody K, Abrahams B, Baker R, et al. A randomized trial of yoga for children hospitalized with sickle cell vaso-occlusive crisis. J Pain Symptom Manage. 2017;53(6):1026–34. https:// doi.org/10.1016/j.jpainsymman.2016.12.351.
- 55. Balayssac-Siransy E, Connes P, Tuo N, et al. Mild haemorheological changes induced by a moderate endurance exercise in patients with sickle cell anaemia. Br J Haematol. 2011;154 (3):398–407. https://doi.org/10.1111/j.1365-2141.2011.08728.x.
- 56. Connes P, Machado R, Hue O, Reid H. Exercise limitation, exercise testing and exercise recommendations in sickle cell anemia. Clin Hemorheol Microcirc. 2011;49(1-4):151–63. https://doi.org/10.3233/CH-2011-1465.
- 57. Lal A, Fung EB, Pakbaz Z, Hackney-Stephens E, Vichinsky EP. Bone mineral density in children with sickle cell anemia. Pediatr Blood Cancer. 2006;47(7):901–6. https://doi.org/10.1002/pbc.20681.
- Antwi-Boasiako C, Kusi-Mensah YA, Hayfron-Benjamin C, et al. Total serum magnesium levels and calcium-to-magnesium ratio in Sickle cell disease. Medicina (B Aires). 2019;55 (9):547. https://doi.org/10.3390/medicina55090547.
- 59. AlJama A, AlKhalifah M, Al-Dabbous IA, Alqudaihi G. Vitamin D deficiency in sickle cell disease patients in the Eastern Province of Saudi Arabia. Ann Saudi Med. 2018;38(2):130–6. https://doi.org/10.5144/0256-4947.2018.130.
- Wang CJ, Kavanagh PL, Little AA, Holliman JB, Sprinz PG. Qualityof-care indicators for children with Sickle cell disease. Pediatrics. 2011;128(3):484–93. https://doi.org/10.1542/peds.2010-1791.
- 61. Padman R, Henry M. The use of bilevel positive airway pressure for the treatment of acute chest syndrome of sickle cell disease. Del Med J. 2004;76(5):199–203.
- 62. Hsu LL, Batts BK, Rau JL. Positive expiratory pressure device acceptance by hospitalized children with sickle cell disease is comparable to incentive spirometry. Respir Care. 2005;50 (5):624–7.
- 63. Ballas SK. Dental complications of sickle cell disease. JBR Journal of Interdisciplinary Medicine and Dental Science. 2014;02(06). https://doi.org/10.4172/2376-032x.1000152.
- 64. Correa MEP. Comment on: "oral health-related quality of life in children and teens with sickle cell disease". Hematol Transfus Cell Ther. 2016;38(2):97–8. https://doi.org/10.1016/J. BJHH.2016.03.001.
- 65. Downes SM, Hambleton IR, Chuang EL, Lois N, Serjeant GR, Bird AC. Incidence and natural history of proliferative sickle cell retinopathy. Ophthalmology. 2005;112(11):1869–75. https://doi.org/10.1016/j.ophtha.2005.05.026.
- 66. Yawn BP, Buchanan GR, Afenyi-Annan AN, et al. Management of Sickle cell disease. JAMA. 2014;312(10):1033. https://doi.org/10.1001/jama.2014.10517.
- 67. Cintho Ozahata M, Page GP, Guo Y, et al. Clinical and genetic predictors of priapism in Sickle cell disease: results from the Recipient epidemiology and donor Evaluation Study III Brazil

- Cohort study. J Sex Med. 2019;16(12):1988–99. https://doi.org/10.1016/j.jsxm.2019.09.012.
- 68. Granja PD, Magalhães Quintão SB, Perondi F, et al. Úlceras de perna em pacientes com anemia falciforme. J Vasc Bras. 2020;19. https://doi.org/10.1590/1677-5449.200054.
- 69. Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde. Portaria nº 473, DE 26 DE ABRIL DE 2013. Estabelece protocolo de uso do Doppler Transcraniano como procedimento ambulatorial na prevenção do acidente vascular encefálico em pacientes com doença falciforme. https://bvsms.saude.gov.br/bvs/saudelegis/sas/2013/prt0473_26_04_2013.html. Published 2013. Accessed on: April 24, 2023.
- DeBaun MR, Armstrong FD, McKinstry RC, Ware RE, Vichinsky E, Kirkham FJ. Silent cerebral infarcts: a review on a prevalent and progressive cause of neurologic injury in sickle cell anemia. Blood. 2012;119(20):4587–96. https://doi.org/10.1182/blood-2011-02-272682.
- DeBaun MR, Jordan LC, King AA, et al. American Society of Hematology 2020 guidelines for sickle cell disease: prevention, diagnosis, and treatment of cerebrovascular disease in children and adults. Blood Adv. 2020;4(8):1554–88. https://doi. org/10.1182/bloodadvances.2019001142.
- Schatz J, Reinman L, Bills SE, Johnston JD. Sociodemographic and biomedical correlates of developmental delay in 2- and 4-yearolds with Sickle cell disease. J Dev Behav Pediat. 2022;43(4):224– 32. https://doi.org/10.1097/DBP.00000000001011.
- Sahu T, Pande B, Sinha M, Sinha R, Verma HK. Neurocognitive changes in Sickle Cell disease: a comprehensive review.
 Ann Neurosci. 2022;29(4):255–68. https://doi.org/10.1177/09727531221108871.
- 74. Kawadler JM, Clayden JD, Clark CA, Kirkham FJ. Intelligence quotient in paediatric sickle cell disease: a systematic review and meta-analysis. Dev Med Child Neurol. 2016;58(7):672–9. https://doi.org/10.1111/dmcn.13113.
- 75. Friedrisch JR. Cirurgia e anestesia na doença falciforme. Rev Bras Hematol Hemoter. 2007;29(3). https://doi.org/10.1590/S1516-84842007000300022.
- 76. Vicari P, Barretto de Mello A, Figueiredo MS. Effects of hydroxyurea in a population of Brazilian patients with sickle cell anemia. Am J Hematol. 2005;78(3):243–4. https://doi.org/10.1002/ajh.20293.
- Rankine-Mullings AE, Nevitt SJ. Hydroxyurea (hydroxycarbamide) for sickle cell disease. Cochrane Database Systemat Rev. 2022;2022(10). https://doi.org/10.1002/14651858.CD002202.pub3.
- 78. Steinberg MH, McCarthy WF, Castro O, et al. The risks and benefits of long-term use of hydroxyurea in sickle cell anemia: A 17.5 year follow-up. Am J Hematol. 2010;85(6):403–8. https://doi.org/10.1002/ajh.21699.
- Steinberg MH, Barton F, Castro O, et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia. JAMA. 2003;289(13):1645. https://doi.org/10.1001/jama.289.13.1645.
- Ataga KI, Orringer EP. Renal abnormalities in sickle cell disease.
 Am J Hematol. 2000;63(4):205–11. https://doi.org/10.1002/(SICI) 1096-8652(200004)63:4<205::AID-AJH8>3.0.CO;2-8.
- Fishbane S, Spinowitz B. Update on anemia in ESRD and earlier stages of CKD: core curriculum 2018. Am J Kidney Diseases. 2018;71(3):423–35. https://doi.org/10.1053/j.ajkd.2017.09.026.
- 82. Carneiro JDA, Ramos GF, de Carvalho WB, Johnston C, Delgado AF. Proposed recommendations for antithrombotic prophylaxis for children and adolescents with severe infection and/or multisystem inflammatory syndrome caused by SARS-CoV-2. Clinics. 2020;75:e2252. https://doi.org/10.6061/clinics/2020/e2252.
- 83. Brasil. Ministério da Saúde. Protocolo Clínico e Diretrizes Terapêuticas da Sobrecarga de Ferro. 2018. https://www.gov.br/conitec/pt-br/midias/protocolos/pcdt_sobrecarga_ferro.pdf/view. Accessed on: January 1, 2025.

- 84. Puri L, Nottage KA, Hankins JS. Anghelescu DL. State of the art management of acute vaso-occlusive pain in Sickle cell disease. Pediatric Drugs. 2018;20(1):29–42. https://doi.org/10.1007/s40272-017-0263-z.
- 85. Ballas SK, Bauserman RL, McCarthy WF, Castro OL, Smith WR, Waclawiw MA. Hydroxyurea and acute painful crises in sickle cell anemia: effects on hospital length of stay and opioid utilization during hospitalization, outpatient acute care contacts, and at home. J Pain Symptom Manage. 2010;40(6):870–82. https://doi.org/10.1016/j.jpainsymman.2010.03.020.
- 86. Brasil. Ministério da Saúde. Protocolo Clínico e Diretrizes Terapêuticas da Dor Crônica. 2022. https://www.gov.br/conitec/pt-br/midias/consultas/relatorios/2022/20221101_pcdt_dor_cronica_cp74.pdf/view. Accessed on: January 1, 2025.
- 87. Sharma D, Day ME, Stimpson SJ, et al. Acute vaso-occlusive pain is temporally associated with the onset of menstruation in women with sickle cell disease. J Womens Health. 2019;28 (2):162–9. https://doi.org/10.1089/jwh.2018.7147.
- 88. Rodrigues PC, Norton RC, Murao M, Januario JN, Viana MB. Iron deficiency in Brazilian infants with sickle cell disease. J Pediatr (Rio J). 2011. https://doi.org/10.2223/JPED.2116. August.
- 89. Friend A, Settelmeyer TP, Girzadas D. Acute chest syndrome. StatPearls. 2025. November 2023 https://www.ncbi.nlm.nih.gov/books/NBK441872/. Accessed on: February 23.
- Emond AM, Collis R, Darvill D, Higgs DR, Maude GH, Serjeant GR. Acute splenic sequestration in homozygous sickle cell disease: natural history and management. J Pediatr. 1985;107 (2):201–6. https://doi.org/10.1016/S0022-3476(85)80125-6.
- 91. Chou ST, Alsawas M, Fasano RM, et al. American society of hematology 2020 guidelines for sickle cell disease: transfusion support. Blood Adv. 2020;4(2):327–55. https://doi.org/10.1182/BLOODADVANCES.2019001143.
- 92. Pirenne F, Bartolucci P, Habibi A. Management of delayed hemolytic transfusion reaction in sickle cell disease: prevention,

- diagnosis, treatment. Transf Clinique et Biologique. 2017;24 (3):227–31. https://doi.org/10.1016/j.tracli.2017.05.016.
- 93. Blau Farmacêutica S.A. Bula do Medicamento Hidroxiureia.
- 94. Platt OS. Hydroxyurea for the Treatment of Sickle Cell Anemia. 2008.
- Ware RE. Optimizing hydroxyurea therapy for sickle cell anemia. Hematology. 2015;2015(1):436–43. https://doi.org/10.1182/asheducation-2015.1.436.
- 96. Yawn BP, Buchanan GR, Afenyi-Annan AN, et al. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA. 2014;312 (10):1033. https://doi.org/10.1001/jama.2014.10517.
- 97. Fioredda F, Skokowa J, Tamary H, et al. The European Guidelines on Diagnosis and management of neutropenia in adults and children: A consensus between the European Hematology Association and the EuNet-INNOCHRON COST action. Hemasphere. 2023;7(4):e872. https://doi.org/10.1097/HS9.0000000000000872.
- 98. Ware RE, Marahatta A, Ware JL, McElhinney K, Dong M, Vinks AA. Hydroxyurea exposure in lactation: a pharmacokinetics study (HELPS). J Pediatr. 2020;222:236–9. https://doi.org/10.1016/j.jpeds.2020.02.002.
- Lederman HM, Connolly MA, Kalpatthi R, et al. Immunologic effects of hydroxyurea in sickle cell anemia. Pediatrics. 2014;134(4):686–95. https://doi.org/10.1542/peds.2014-0571.
- 100. Got Transition® Six Core Elements of Health Care TransitionTM. https://www.gottransition.org/six-core-elements/. Accessed on: April 16, 2025.
- 101. DeBaun MR, Telfair J. Transition and sickle cell disease. Pediatrics. 2012;130(5):926–35. https://doi.org/10.1542/PEDS.2011-3049
- 102. Doença Falciforme Ministério da Saúde. https://www.gov. br/saude/pt-br/assuntos/pcdt/d/doenca-falciforme/view. Accessed on: April 16, 2025.

HEMATOLOGY, TRANSFUSION AND CELL THERAPY

www.htct.com.br

Original article

Overall survival in multiple myeloma in Brazil: A cohort of 16 years

Deborah Marta do Santos Oliveira ^{a,1}, Isabela Cristina Menezes de Freitas ^{a,b}, Wallace Mateus Prata ^{a,c}, Isabella Zuppo Laper ^{a,b}, Pâmela Santos Azevedo ^{a,b}, Adriano de Paula Sabino ^a, Marisa Yurico Itonaga ^d, Carmino Antonio de Souza ^e, Mariângela Leal Cherchiglia ^f, Juliana Alvares Teodoro ^{a,b}, Francisco de Assis Acurcio ^{a,b}, Augusto Afonso Guerra Junior ^{a,b,1,*}

ARTICLE INFO

Article history:
Received 5 August 2024
Accepted 2 July 2025
Available online 12 September 2025

Keywords: Multiple myeloma Survival analysis Cohort studies Medical record linkage Real world evidence

ABSTRACT

Multiple myeloma constitutes approximately 1 % of all malignancies, with a higher incidence observed in over 65-year-old individuals. New technologies have shown promising results with an increased overall survival. The objective of this cohort study was to evaluate the survival analysis of patients with multiple myeloma treated by the Brazilian Unified Health Service over 16 years and compare the effectiveness of bortezomib (Bortezomib)-based treatment with other regimens used. A retrospective national cohort study was conducted utilizing real-world evidence derived from the Brazilian Unified Health System big data. This study focused on 25,370 patients with multiple myeloma who underwent chemotherapy between 2000 and 2015. Of these patients, 50.71 % were male, and the median age was 62 years. The median overall survival was 37 months. Hematopoietic stem cell transplantation (HSCT) was the best prognostic factor with overall survival of 87 months. The bortezomib (Bortezomib)-based chemotherapy provided the best results of the different chemotherapy regimens in terms of overall survival (67 months), followed by thalidomide-based schemes with an overall survival of 54 months. Despite the significant progress made in the Brazilian health system, the National Committee for Technology

^a Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

^b Collaborating Centre for Technology Assessment in Health and Excellence (CCATES), Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

^c Research and Development Directorate of the Ezequiel Dias Foundation, Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

^d Health Consultant Specialized in Oncology, São Paulo, Brazil

^e Hematology and Hemotherapy Center, University of Campinas, São Paulo, Brazil

^f Department of Preventive and Social Medicine at the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

^{*} Corresponding author at: Collaborating Centre for Technology Assessment in Health and Excellence (CCATES), Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.

E-mail addresses: dmsoliveira17@gmail.com (D.M.d.S. Oliveira), augustoguerrajr@ufmg.br (A.A.G. Junior).

¹ These authors contributed equally to this work and share first authorship.

https://doi.org/10.1016/j.htct.2025.103962

^{2531-1379/© 2025} Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Incorporation (CONITEC) needs to make quicker decisions to improve access to new oncology drugs for patients, while maintaining rigorous evaluation criteria. Earlier adoption and adequate funding for oncology services could have saved more lives compared to the treatments made available by the Unified Health Service at that time.

© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Multiple Myeloma (MM) is a hematological disease characterized by the multiplication of malignant plasma cells in the bone marrow. As the second most common malignant hematological disease after lymphoma, MM represents approximately 10 % of such cases and accounts for 1 % of all types of cancer [1,2].

Demographically, MM predominantly affects elderly individuals, with a mean age at diagnosis of 66 years, and a majority of patients (56 %) being male [3]. The actual incidence of MM in Brazil is unknown according to information available in reports of the National Cancer Institute [4,5]. Data provided by the Institute for Health Metrics and Evaluation show that 1.83 deaths per 100,000 inhabitants occurred in Brazil in 2019 due to MM, whereas data from the United States report 5.47 deaths per 100,000 inhabitants [6].

The diagnosis of MM is characterized by bone marrow clonal plasma cells ≥10 % or bone or extramedullary plasmacytoma proven by biopsy, in addition to one or more of the following: evidence of target organ damage that may be attributed to an underlying plasma cell proliferative disorder, specifically: [C] Hypercalcemia: serum calcium >11 mg/dL or >1 mg/dL above the upper limit of normal; [R] Renal failure: creatinine clearance <40 mL in one minute or serum creatinine >177 mmol/L (>2 mg/dL); [A] Anemia: hemoglobin value <10 g/dL or 2 g/dL below the lower limit of normal; [B] Bone lesions: one or more osteolytic lesions on skeletal radiography, computed tomography (CT) or Positron emission tomography-computed tomography (PET-CT). And one or more of the following biomarkers of malignancy: percentage of plasma cells in the bone marrow biopsy ≥60 %; Ratio of Serum Free Light Chains ≥100; >1 focal lesion in magnetic resonance studies [5,7].

The treatment of symptomatic MM is with drugs, such as chemotherapeutics, immunomodulatory agents, proteasome inhibitors, monoclonal antibodies, and more recently, bispecific antibodies and advanced cell therapy combined or not with radiotherapy. HSCT is an important therapeutic option and may be performed in eligible patients. The goal of treatment is to reach an objective overall response rate (symptom and biochemical control), since it is an incurable disease. Patients experience multiple recurrences until becoming refractory to the treatment [8], leading to death.

In the Brazilian Unified Health System (SUS), the available drugs (bortezomib, cyclophosphamide, cisplatin, dexamethasone, doxorubicin, liposomal doxorubicin, etoposide, melphalan, vincristine and thalidomide) may be used in different combinations [9–11].

Limited research has been published regarding MM in Brazil, a nation comprising approximately 210 million inhabitants. Most of the reports cover single institution experiences

or small numbers of patients compared to this nationwide sixteen years cohort [12,13]. The purpose of this study is to perform a broad evaluation and description of the epidemiological profile, access to treatments and the main clinical outcome of the MM patients treated by SUS.

Methods

Study design and setting

This study employed a nationwide, non-concurrent, open cohort design, with patient follow-ups conducted from 2000 to 2015. Data were developed through deterministic-probabilistic linkage of the patient-centered registry within the Hospital Information System, Ambulatory Information System and Mortality Information System [14]. The Hospital Information System contains data on hospitalization from both public and private hospitals contracted by SUS. The High-Complexity Procedure Authorization subsystem of the Ambulatory Information System database contains all information about chemotherapy including records about the medical diagnoses for which treatment was prescribed using the International Classification of Diseases, Tenth Revision (ICD-10) codes.

The chemotherapy dispensations recorded in the database were decoded, listed, and cleaned to extract information regarding the protocols utilized. Treatment effectiveness was assessed by comparing outcomes of patients exposed to bortezomib-based regimens compared to those treated with other chemotherapeutic regimens.

Patients were categorized into therapeutic groups based on exposure to specific agents at any time during their treatment, regardless of treatment line. For instance, the 'bortezomib-based' group comprised all patients who received bortezomib at any point during the study period. This inclusive approach aimed to evaluate the overall impact of drug exposure across the disease trajectory.

The study entry period was between January 2000 to December 2014, and patients were followed up from January 2000 to December 2015 (16 years). This strategy assured a minimum follow-up of 12 months. The inclusion criteria for this study were as follows: patients who received one or more treatments for MM (ICD C90.0), individuals over 18 years of age, and those initially treated between 01/01/2000 and 31/12/2014. Patients were censored if they abandoned or interrupted their treatment or at the end of follow-up (right censoring). Treatment failure events were characterized by death (Figure 1).

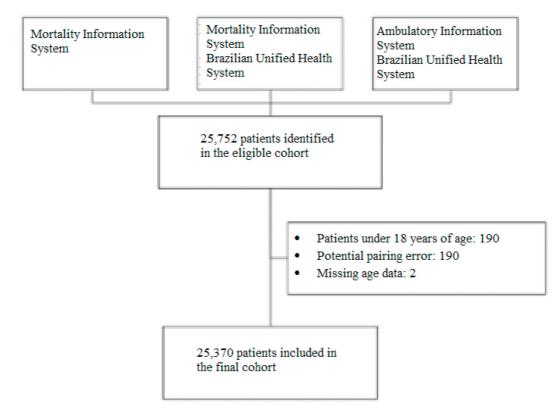


Figure 1-Cohort selection flow.

Ethical aspects

The use of the National Database was evaluated and approved by the Research Ethics Committee of Federal University of Minas Gerais (CAAE - 16334413.9.0000.5149).

Statistical analysis

The frequency distribution was analyzed for categorical variables. Measures of central tendency and variability were determined for numerical and quantitative variables (sociodemographic and clinical characteristics). Among other available variables, the chemotherapy regimen was used to stratify survival based on drug treatment.

The baseline was used as the first event (first chemotherapy or hospitalization for chemotherapy) to calculate the overall survival (OS). The Kaplan-Meier technique was used to determine the cumulative probability of survival of patients included in the study and according to the explanatory variables of the study. The Log-Rank test was used for subgroup analyses and test the hypothesis of equality between survival curves.

The proportional hazards model — Cox Model — was used to calculate hazard ratios (HR) and 95 % confidence intervals (95 % CI) of covariables that were statistically significant (p-value <0.05) in the Log-Rank test. The software "R" version 4.1.3, of R Foundation for Statistical Computing, Microsoft Excel® business 2019 was used for statistical analysis.

Results

The characteristics of the cohort are shown in Table 1. The final cohort consisted of 25,370 patients with 50.71 % being males. The median age was 62 years, with 70 % of patients over 56 years of age (Table 1). The distribution according to region identified a higher concentration of patients in the southeastern region (49.9 %), followed by the northeast and the south of the country (21.7 % and 19.3 %, respectively) (Table 1). The OS of the total study population was 37 months (95 % CI: 36–38 months) (Figure 2).

The assessment by sex found an OS of 40 months (95 % CI: 39-42 months) for women versus 36 months (95 % CI: 34-37 months) for men (Figure 3).

Table 2 presents the relative risk estimates (HRs) and corresponding 95 % CIs for the main sociodemographic and clinical characteristics analyzed in the cohort based on a multivariable Cox proportional hazards model. This table allows for the identification of groups with higher or lower risk of death within the cohort, contributing to the understanding of disparities in survival outcomes. In the univariate analysis, male sex was associated with an increased risk of death (HR: 1.12; 95 % CI: 1.08–1.16).

Over 65-year-old patients had an OS of 29 months versus 44 months for the other age groups (Figure 4).

The risk of death for patients from the south of Brazil was the highest in the country (HR: 1.11; 95 % CI: 1.03-1.20) and the lowest risk of death was identified in patients from the northeastern region (HR: 0.84; 95 % CI: 0.78-0.91). The relative

Table 1 – Characteristics of the patients included	in	the
cohort.		

Variable	n = 25,370
Sex - n (%)	
Female	12,505 (49)
Male	12,865 (51)
Age at baseline - Median (IQR)	62 (54 to 71)
Age range at baseline - n (%)	
>65 years	10,122 (40)
18 - 25 years	103 (0.4)
26 - 35 years	408 (1.6)
36 - 45 years	1850 (7.3)
46 - 55 years	5089 (20)
56 - 65 years	7798 (31)
Self-declared skin color - n (%)	/.)
Asian	258 (1)
White	8032 (32)
Indigenous	3 (<0.1)
Unknown	12,299 (48)
Brown	3879 (15)
Black	899 (3.5)
Residence region at baseline - n (%) Central-West	1702 (C 7)
North	1703 (6.7)
Northeast	635 (2.5)
South	5596 (22)
Southeast	4394 (17)
ICD10 Description at baseline - n (%)	13,042 (51)
Extramedullary plasmacytoma	604 (2.4)
Gammopathy	480 (1.9)
Multiple myeloma	23,833 (94)
Multiple myeloma and malignant plasma	71 (0.3)
cell neoplasms	, 1 (0.0)
Plasma cell leukemia	382 (1.5)
Cohort entry period - n (%)	(/
2000 - 2003	6185 (24)
2004 - 2007	5306 (21)
2008 - 2011	7293 (29)
2012 - 2015	6586 (26)
Medication at baseline - n (%)	
bortezomib (Bortezomib) Based	445 (1.8)
Thalidomide Based	2633 (10)
Others	22,292 (88)
Hematopoietic stem cell transplantation - n	
(%)	
No	22,644 (89)
Yes	2726 (11)
Comorbidity Charlson Index at baseline -	2.00 (2.00 to 3.00)
Median (IQR)	
Frailty Index at baseline - Median (IQR)	0 (0 to 11)
Mean time of illness before baseline -	0 (–1 to 0)
Median (IQR)	40./5
Mean time in the cohort - Median (IQR)	18 (6 to 40)
Event type - n (%)	10.200 (40)
Censure	12,328 (49)
Death	13,042 (51)

risks of the main characteristics evaluated in the study are shown in Table 2.

Although bortezomib had not been formally incorporated into the SUS at the time of the study, patients receiving therapeutic regimens containing bortezomib were nevertheless identified (n = 445 patients). In terms of OS, bortezomib-based chemotherapy showed the best results, achieving a median time of 67 months (95 % CI: 55-NA]). This corresponds to a

Hazard Ratio of 0.60 (95 % CI: 0.50–0.73), indicating a significantly reduced hazard of death compared to other treatment regimens (Figure 5).

The second most common scheme was thalidomide-based with a median OS of 54 months (95 % CI: 50-62) and HR 1.30 times better when compared to all other options (HR: 0.77; 95 % CI 0.72-0.82) (Figure 6).

The comparison of the OS for all the therapeutic regimens is shown in Figure 7.

In this study, 2726 patients were identified as having undergone HSCT. This subgroup achieved a median survival time of 87 months (95 % CI: 81–95), and HR 1.51 times better (HR: 0.36; 95 % CI: 0.34–0.39) versus 33 months (95 % CI: 32–34) for patients who did not undergo HSCT (Figure 8).

Discussions

MM is an onco-hematological neoplasm with a low incidence. The median age at start of treatment in this study was 62 years, which is consistent with the Brazilian literature. In a study conducted in Reginal Hospital in Mato Grosso do Sul of patients treated from January 2013 to December 2017, the median age of patients was 63 years, corroborating the findings of this study [15]. The same median (63 years; range: 37 -82 years) was found in a study conducted by Silva et al. 16 in Clinical Hospital of Minas Gerais [16]. The variation found in this cohort was 18 to 98 years, with 70 % of patients being over 56 years old. The median age in the present study is comparable to the 60.5 years reported by Hungria et al. [5]. Given that SUS provides care for most of the population [17], with no significant access restrictions compared to the private healthcare system, our results are likely representative of the overall national profile of MM patients.

The age of patients at the beginning of treatment for MM is lower in Brazil than in other countries. In a study using data from the French health care system, the median age was 74 years (range: 63–81 years). In the United States, the median age at diagnosis was 69 years, with 60 % of patients over 65 [18]. In that report, there was no significant difference in incidence between sexes, but mortality was higher in men (HR: 1.12; 95 % CI: 1.08–1.16) [18]. In the United States, the incidence of MM was 1.5 times higher in men (2.1/100,000) than in women (1.4/100,000) and the mortality in 2018 was 59,000 deaths in men versus 47,000 in women, in the same period.

The life expectancy in Brazil in 2010 was assessed at 73.9 years, which can be considered lower than countries such as the USA, which had an approximate life expectancy of 80 years in 2010 [19,20]. Regarding the epidemiological profile of MM, the age at diagnosis found in this cohort is also lower when compared to patients in the USA (66–70 years), with 37 % of patients being younger than 65 years, as reported by Kazandjian [21].

The OS found in the current cohort reached a median time around three years (37 months), a result consistent with the literature, considering the same period [21]. Different factors affect the OS of MM patients in Brazil. Notably are the lack of access to or availability of newer medicines throughout the country and the low rates of autologous HSCT despite financing by SUS. The low rates of HSCT can be attributed to a

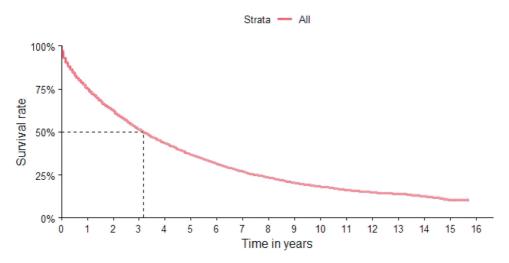


Figure 2-Overall survival.

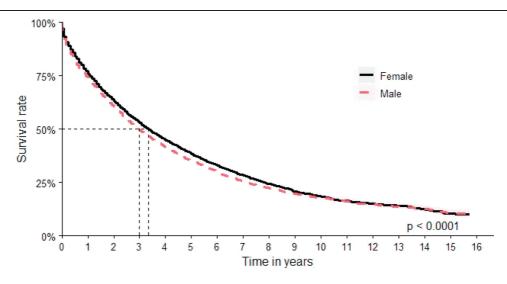


Figure 3 - Overall survival by sex.

combination of factors, including insufficient specialized medical centers, geographic disparities in healthcare access, long waiting times, and socioeconomic barriers that limit patient access to the treatment. The current study observed that transplant-eligible patients exhibited a longer OS when compared to their non-transplanted counterparts, aligning with findings from other published studies [22,23].

Eligibility to HSCT is the best prognostic factor in MM; data obtained in this study are compatible to data from the International Myeloma Working Group in five countries in Latin America, where OS of HSCT-eligible patients was 73.6 months versus 43.0 months for ineligible patients [24].

According to Moore et al. [25] the incidence of MM is on the rise in Nordic countries and other Western nations. Despite this demographic change, the inclusion of individuals from the older age group in clinical trials can be a challenge as evidenced in studies such as VISTA [26], FIRST [27], ALCYONE [28] and MAIA [29]. Over 65-year-old patients often present clinical conditions that hinder their participation in clinical

trials, particularly due to frailty and the complexities involved in testing new therapies. In this context, real world evidence becomes relevant, as it reflects outcomes in the actual MM population, taking into account the age, sex, and other factors [25].

The improvement in OS following the incorporation of novel agents has been well described in the literature. In this study, an OS of 54 months was observed among patients who received thalidomide in the therapeutic regimen. Two studies evaluated the regimen of melphalan and prednisone with or without thalidomide in previously untreated patients and elderly patients. The study by Hulin et al. [30] in over 75-year-old patients with early MM, reported an OS of 45.3 months versus 27.7 months. The study conducted by Facon et al. [31] of over 65-year-old patients showed an OS of 51.6 months versus 33.2 months in the group without thalidomide. These studies reinforce the finding of the benefits of associating thalidomide to the therapeutic regimen and the difference in OS regarding age at diagnosis [30,31].

Table 2 – Estimated risk rate according to the COX proportional analysis model for the total cohort (n = 25,370; de 13,042).					
Characteristic	HR	95 % CI	<i>p</i> -valu		
Sex					
Female	_	_			
Male	1.09	1.05-1.13	< 0.001		
Age at baseline	1.02	1.02-1.02	<0.001		
Age range at baseline					
>65 years	_	_			
18–25 years	0.47	0.34-0.66	<0.001		
26–35 years	0.50	0.43-0.59	<0.001		
36–45 years	0.48	0.44-0.52	<0.001		
46–55 years	0.66	0.63-0.70	<0.001		
56–65 years	0.76	0.73-0.79	<0.001		
Self-declared skin color					
Asian	_	_			
White	1.36	1.09-1.70	0.007		
Indigenous	2.38	0.58–9.67	0.23		
Unknown	2.26	1.81-2.83	<0.001		
Brown	1.23	0.98–1.54	0.080		
Black	1.15	0.90-1.47	0.25		
Residence region at baseline	1.13	0.50 1.17	0.23		
Central-West	_	_			
North	0.94	0.82-1.08	0.38		
Northeast	0.86	0.80-0.93	<0.001		
South	1.12	1.04-1.21	0.003		
Southeast	0.93	0.87-1.00	0.052		
ICD 10 Description at baseline	0.55	0.87 – 1.00	0.032		
Extramedullary plasmacytoma	_	_			
Gammopathy	 1.14	 0.95–1.35	0.15		
Multiple myeloma	1.14	1.12-1.41	<0.001		
	1.26	0.92-1.72	0.15		
Multiple myeloma and malig-	1.26	0.92-1.72	0.15		
nant plasma cell neoplasms Plasma cell leukemia	1.49	1.25-1.79	<0.001		
	1.49	1.25-1.79	<0.001		
Cohort entry period					
2000 - 2003			.0.004		
2004 - 2007	1.22	1.16-1.28	<0.001		
2008 - 2011	0.99	0.94-1.03	0.53		
2012 - 2015	0.85	0.81-0.90	<0.001		
Medication at baseline					
Bortezomib Based*	_	_			
Thalidomide Based	1.31	1.07-1.60	0.009		
Others	1.71	1.41-2.06	<0.003		
HSCT					
No					
Yes	0.36	0.34-0.39	<0.001		
Comorbidity Charlson at baseline	1.06	1.05-1.07	<0.001		
Frailty Index at baseline	1.00	1.00-1.00	< 0.001		

1.00

0.95

Thalidomide was market approved in Brazil for MM treatment in 2000 and was integrated into the SUS during the study period [32]. The low percentage of patients using this drug may be due to the need for patient monitoring and guidance, particularly in a vast country like Brazil, where access to Thalidomide and HSCT is more limited outside major urban centers.

Mean time of illness before

Mean time in the cohort

In a study conducted by Hungria et al. in five Latin American countries, HSCT was performed in 58.6 % of the patients for whom it was initially planned, and in only 26.9 % of the total patient population [24]. Despite the observed benefits in

treatments involving thalidomide or HSCT, and their availability in the SUS, physicians and medical institutions have the possibility to choose which treatments to prescribe for MM patients. The guideline that enumerates the available procedures is not obligatory, leading to variations in therapy access based on the clinical judgment of the medical team.

< 0.001

< 0.001

1.00-1.01

0.95 - 0.95

The median OS for patients using bortezomib was 67 months versus 37 months in the total study population. In the Phase 3 ENDEAVOR study of relapsed or refractory over 18-year-old patients using bortezomib and dexamethasone (Vd), the OS was 40 months [33]. In the VISTA study,

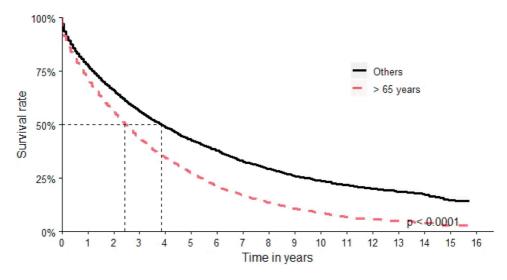


Figure 4-Overall survival by age.

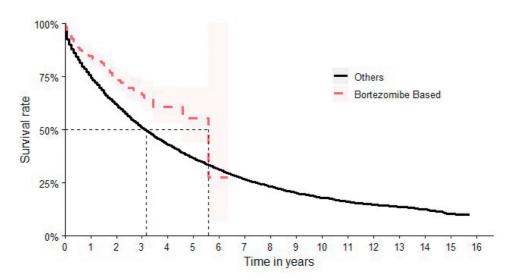


Figure 5 – Overall survival comparing bortezomib-based chemotherapy with other regimens.

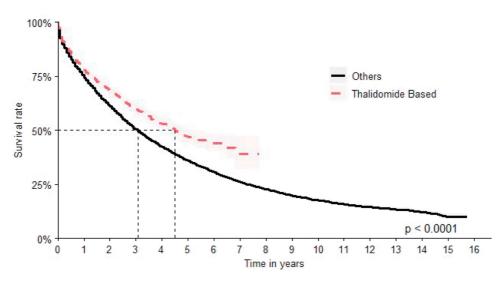


Figure 6 – Overall survival for thalidomide-based chemotherapy.

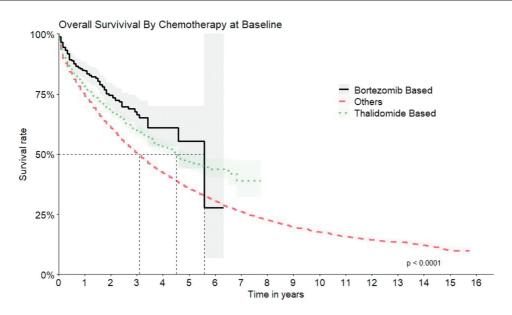


Figure 7 - Overall survival by therapeutic regimen.

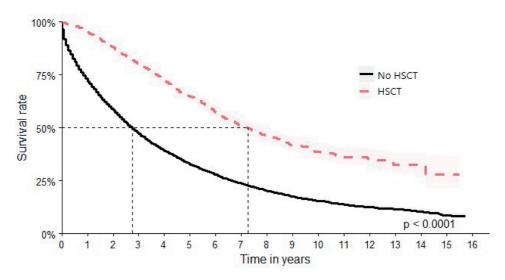


Figure 8 - Overall survival after hematopoietic stem cell transplantation.

previously untreated patients using an association of bortezomib, melphalan and prednisone (VMP), OS was 56.4 months over a five-year follow-up [34], supporting what has already been discussed regarding the increased OS related to the early use of technology.

A key methodological consideration is that patients were classified according to exposure to specific therapeutic agents at any point during the treatment course, rather than being limited to first-line therapy. This methodological choice aimed to assess the overall impact of drug exposure on patient survival across the entire disease trajectory. Although this approach does not allow for the isolation of the effects of bortezomib when used exclusively as first-line treatment, it better reflects the real-world complexity of therapeutic regimens and captures the cumulative benefit associated with

access to effective agents. The improved OS observed among bortezomib-exposed patients may partially reflect treatment selection bias and the advantage of longer survival allowing access to subsequent lines of therapy. However, the findings suggest that bortezomib exposure, regardless of treatment line, is associated with favorable survival outcomes. Future studies designed to evaluate line-specific treatment effects are warranted to further elucidate the role of bortezomib in different therapeutic stages.

The Brazilian National Committee for Technology Incorporation (CONITEC) carefully carries out and deliberates on the continuous assessment of new technologies, costs, and equity in access to healthcare. This process considers several factors, such as effectiveness, safety, cost-effectiveness, and epidemiological needs. However, Bortezomib was only

formally incorporated by the CONITEC into the SUS in 2020 thereby explaining the low number of patients treated with this drug in this cohort [9,10].

However, prior to this formal incorporation some factors such as approval for market entry by the national regulatory agency (National Health Surveillance Agency - ANVISA) with its scientific evidence of efficacy, encouraged its use by physicians. Another reason is the model of finance of the oncology service providers in Brazil where certain flexibility is allowed for when prescribing chemotherapy. SUS makes a fixed payment for patient treatment and oncology services providers are free to choose among therapeutic options between approved medicines. Despite the significant progress made by SUS in expanding access to a broad range of therapeutic options, there is still a need for more timely decisions by CONITEC [35] regarding the incorporation of new oncology drugs. Accelerating this process, while maintaining rigorous evaluation criteria, could improve access and reduce delays in the availability of innovative treatments. Litigation about oncology treatments is a major issue in Latin America, especially in Brazil and a faster assessment would reduce the conflict. In the case of Bortezomib, an earlier incorporation into SUS, coupled with adequate funding for oncology services, could have potentially saved lives, given the observed impact on OS in the current study compared to the treatments available at that time within SUS.

Conflicts of interest

The author declares no conflicts of interest.

CRediT authorship contribution statement

Deborah Marta do Santos Oliveira: Formal analysis, Investigation, Methodology, Software, Writing – original draft. Isabela Cristina Menezes de Freitas: Formal analysis, Methodology, Visualization, Writing - review & editing. Wallace Mateus Prata: Formal analysis, Methodology, Visualization, Writing review & editing. Isabella Zuppo Laper: Formal analysis, Investigation, Methodology, Software. Pâmela Santos Azevedo: Formal analysis, Investigation, Methodology, Software. Adriano de Paula Sabino: Conceptualization. Marisa Yurico Itonaga: Conceptualization. Carmino Antonio de Souza: Conceptualization. Mariângela Leal Cherchiglia: Conceptualiza-Juliana Alvares Teodoro: Conceptualization, Supervision. Francisco de Assis Acurcio: Conceptualization, Supervision. Augusto Afonso Guerra Junior: Formal analysis, Investigation, Methodology, Project administration, Software, Supervision, Visualization, Writing – review & editing.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

REFERENCES

- 1. CDC. Myeloma [Internet]. [cited 2023 Oct 8]. Available from: https://www.cdc.gov/cancer/myeloma/index.htm
- Kazandjian D. Multiple myeloma epidemiology and survival: a unique malignancy. Semin Oncol. 2016;43(6):676–81. Available from: https://linkinghub.elsevier.com/retrieve/pii/S00937754 16300951.
- 3. Kumar SK, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, Pandey S, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28(5):1122–8. Available from: https://www.nature.com/articles/leu2013313.
- 4. Instituto Nacional de Câncer José Alencar Gomes da Silva. Estimativa 2020: incidência de câncer no Brasil /Instituto Nacional de Câncer José Alencar Gomes da Silva. Rio de Janeiro: INCA; 2019. Available from: https://www.inca.gov.br/ sites/ufu.sti.inca.local/files/media/document/estimativa-2020-incidencia-de-cancer-no-brasil.pdf.
- Hungria VTM, Maiolino A, Martinez G, Colleoni GWB, Coelho EODM, Rocha L, et al. Confirmation of the utility of the International Staging System and identification of a unique pattern of disease in Brazilian patients with multiple myeloma. Haematologica. 2008;93(5):791–2. Available from: http://www.haematologica.org/cgi/doi/10.3324/haematol.11637.
- 6. INSTITUTE FOR HEALTH METRICS AND EVALUATION IHME. GBD compare.
- 7. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–48. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1470204514704425.
- NETWORK NCC. NCCN guidelines version 5.2022 multiple myeloma. Available from: https://www.nccn.org/professionals/physician_gls/pdf/myeloma.pdf.
- Ministério da Saúde. Relatório Conitec nº 558: bortezomibe para o tratamento de pacientes adultos com mieloma múltiplo, não previamente tratados, elegíveis ao transplante autólogo de células tronco hematopoiéticas. Available from: http://conitec.gov.br/images/Consultas/Relatorios/2020/ 20200928_Relatorio_de_Recomendacao_558_Bortezomibe_mieloma_elegiveis.pdf.
- 10. Ministério da Saúde. Relatório Conitec nº 559: bortezomibe para o tratamento de pacientes adultos com mieloma múltiplo, não previamente tratados, inelegíveis ao transplante autólogo de células-tronco hematopoiéticas. Available from: http://conitec.gov.br/images/Consultas/Relatorios/2020/ 20200928_Relatorio_de_recomendacao_559_Bortezomibe_ mieloma_inelegiveis.pdf.
- 11. BRASIL. Ministério da Saúde. Portaria no 708, de 06 de agosto de 2015. Aprova as Diretrizes Diagnósticas e Terapêuticas do Mieloma Múltiplo. Available from: https://www.gov.br/saude/pt-br/assuntos/protocolos-clinicos-e-diretrizes-terapeuticas-pcdt/arquivos/2015/ddt_mieloma-multiplo.pdf
- 12. da Costa IHF, de Pádua CAM, de Miranda, Drummond PL, Silveira LP, Malta JS, dos Santos RMM, et al. Comparison of three risk assessment models for thromboembolism in multiple myeloma patients receiving immunomodulators: a Brazilian historical cohort. J Thromb Thrombol. 2023;56(1):147–55. Available from: https://doi.org/10.1007/s11239-023-02817-7.
- 13. Drummond PLM, dos Santos RMM, Reis AMM, Malta JS, Silveira LP, da Costa IHF, et al. Real-world effectiveness and safety of multiple myeloma treatments based on thalidomide and bortezomib: a retrospective cohort study from 2009 to 2020 in a Brazilian metropolis. Cancer Epidemiol. 2023;85:102377. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1877782123000577.

- 14. Junior AAG, Pereira RG, Gurgel EI, Cherchiglia M, Dias LV, Ávila J, et al. Building the National database of Health centred on the individual: administrative and epidemiological record linkage Brazil, 2000-2015. Int J Popul Data Sci. 2018;3(1). Available from: https://ijpds.org/article/view/446.
- 15. Garcia CS, Righes C, da S, Muller K, de TC. Ricas SMM de C, Almeida EB de. Perfil epidemiológico de pacientes diagnosticados com mieloma múltiplo em hospital de referência para neoplasias malignas hematológicas. RRev Bras Hematol Hemoter. 2020;52(3). Available from: http://www.rbac.org.br/artigos/perfil-epidemiologico-de-pacientes-diagnosticadoscom-mieloma-multiplo-em-hospital-de-referencia-para-neoplasias-malignas-hematologicas/.
- 16. Silva ROP e, Brandão KMA, Pinto PVM, Faria RMD, Clementino NCD, Silva CMF, et al. Mieloma múltiplo: características clínicas e laboratoriais ao diagnóstico e estudo prognóstico. Rev Bras Hematol Hemoter. 2009;31(2):63–8. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-84842009000200005&lng=pt&nrm=iso&tlng=pt.
- Estatísticas Sociais. PNS 2013: três em cada quatro brasileiros costumam buscar atendimento médico na rede pública de saúde. Agência IBGE Notícias; 2015.
- 18. Padala SA, Barsouk A, Barsouk A, Rawla P, Vakiti A, Kolhe R, et al. Epidemiology, staging, and management of Multiple myeloma. Med Sci. 2021;9(1):3.. Available from: https://www.mdpi.com/2076-3271/9/1/3.
- Arias E, Xu J, Kochanek K. United States life tables. National Vital Statistics Reports; 2021. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr72/nvsr72-12.pdf.
- 20. IBGE. Em 2022, expectativa de vida era de 75,5 anos. Available from: https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/38455-em-2022-expectativa-de-vida-era-de-75-5-anos#:∼:text=Paraoshomens %2Cestaexpectativa,àpandemiadeCOVID-19.
- 21. Hungria VT, de M. Mieloma múltiplo no Brasil: aspectos clínicos, demográficos e validação do Sistema de Estadiamento Internacional (ISS) em pacientes brasileiros. Rev Bras Hematol Hemoter. 2007: 10–3.
- Bobin A, Gardeney H, Sabirou F, Gruchet C, Lévy A, Nsiala L, et al. The role of immunotherapy in non-transplant eligible multiple myeloma. Front Oncol. 2020;10. Available from: https://www. frontiersin.org/article/10.3389/fonc.2020.00676/full.
- 23. Rajkumar SV. Treatment of multiple myeloma. Nat Rev Clin Oncol. 2011;8(8):479–91. Available from: https://www.nature.com/articles/nrclinonc.2011.63.
- 24. Hungria VTM, Maiolino A, Martinez G, Duarte GO, Bittencourt R, Peters L, et al. Observational study of multiple myeloma in Latin America. Ann Hematol. 2017;96(1):65–72. Available from: http://link.springer.com/10.1007/s00277-016-2866-9.
- 25. Moore KLF, Turesson I, Genell A, Klausen TW, Knut-Bojanowska D, Redder L, et al. Improved survival in myeloma patients—a nationwide registry study of 4647 patients ≥75 years treated in Denmark and Sweden. Haematologica. 2022;108 (6):1640–51. Available from: https://haematologica.org/article/view/haematol.2021.280424.
- 26. Mateos MV, Richardson PG, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O, et al. Bortezomib plus Melphalan and

- Prednisone compared with Melphalan and Prednisone in previously untreated multiple myeloma: updated follow-up and impact of subsequent therapy in the phase III VISTA trial. J Clinic Oncol. 2010;28(13):2259–66. https://doi.org/10.1200/JCO.2009.26.0638. Available from:.
- 27. Hulin C, Belch A, Shustik C, Petrucci MT, Dührsen U, Lu J, et al. Updated outcomes and impact of age with lenalidomide and low-dose dexamethasone or Melphalan, prednisone, and thalidomide in the randomized, phase III FIRST trial. J Clinic Oncol. 2016;34(30):3609–17. Available from: https://doi.org/10.1200/JCO.2016.66.7295.
- Mateos MV, Dimopoulos MA, Cavo M, Suzuki K, Jakubowiak A, Knop S, et al. Daratumumab plus Bortezomib, Melphalan, and Prednisone for untreated myeloma. New Engl J Med. 2018;378 (6):518–28. Available from: http://www.nejm.org/doi/10.1056/ NEJMoa1714678.
- 29. Facon T, Kumar SK, Plesner T, Orlowski RZ, Moreau P, Bahlis N, et al. Daratumumab, lenalidomide, and dexamethasone versus lenalidomide and dexamethasone alone in newly diagnosed multiple myeloma (MAIA): overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22 (11):1582–96. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1470204521004666.
- 30. Hulin C, Facon T, Rodon P, Pegourie B, Benboubker L, Doyen C, et al. Melphalan-Prednisone-Thalidomide (MP-T) demonstrates a significant survival advantage in elderly patients ≥75 years with multiple myeloma compared with Melphalan-Prednisone (MP) in a randomized, double-blind, placebo-controlled trial, IFM 01/01. Blood. 2007;110(11):75.. Available from: https://ashpublications.org/blood/article/110/11/75/118617/ MelphalanPrednisoneThalidomide-MPT-Demonstrates-a.
- 31. Facon T, Mary JY, Hulin C, Benboubker L, Attal M, Pegourie B, et al. Melphalan and prednisone plus thalidomide versus melphalan and prednisone alone or reduced-intensity autologous stem cell transplantation in elderly patients with multiple myeloma (IFM 99–06): a randomised trial. Lancet. 2007;370 (9594):1209–18. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673607615372.
- Ministério da Saúde. Resolução Rdc Nº 34, De 20 de Abril De 2000. Available from: https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2000/rdc0034_20_04_2000.html.
- 33. Dimopoulos MA, Goldschmidt H, Niesvizky R, Joshua D, Chng WJ, Oriol A, et al. Carfilzomib or bortezomib in relapsed or refractory multiple myeloma (ENDEAVOR): an interim overall survival analysis of an open-label, randomised, phase 3 trial. Lancet Oncol. 2017;18(10):1327–37. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1470204517305788.
- 34. San Miguel JF, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O, Kropff M, et al. Persistent overall survival benefit and No increased risk of second malignancies with Bortezomib-Melphalan-Prednisone versus Melphalan-Prednisone in patients with previously untreated multiple myeloma. J Clinic Oncol. 2013;31(4):448–55. Available from: https://doi.org/10.1200/JCO.2012.41.6180.
- Ministério da Saúde. CONITEC. Comissão Nacional de Incorporação de Tecnologias no sistema único de Saúde. Available from: https://www.gov.br/conitec/pt-br.

HEMATOLOGY, TRANSFUSION AND CELL THERAPY

www.htct.com.br

Original article

Risk factors associated with the use of red blood cells in elective cardiac surgeries: A patient blood management (PBM) view

Tainá Miotto de Souza , Cláudio Lucas Miranda, , Andrezza Belluomini Castro, , Patrícia Carvalho Garcia-Bonichini *

Hemocentro do Hospital das Clínicas da Faculdade de Medicina de Botucatu (HCFMB-UNESP), Botucatu, SP, Brazil

ARTICLE INFO

Article history: Received 8 February 2024 Accepted 28 July 2025 Available online 17 September 2025

Keywords:
Blood transfusion
Patient blood management
Cardiac surgery
Intraoperative bleeding
Diabetes mellitus

ABSTRACT

Background: Blood is a biological, irreplaceable, and perishable resource, provided through voluntary, altruistic, and free donation in Brazil. Although blood components are widely used in hospital settings, several challenges persist, including the limited availability of these resources, the high costs associated with their procurement, storage, and transfusion, as well as the risks inherent in the allogeneic transfusion process due to potential transfusion reactions. Therefore, there is a need to focus on Patient Blood Management (PBM) within the Brazilian transfusion system to reduce the need for transfusions, particularly of packed red blood cells, during elective cardiac surgeries.

Objective: To evaluate the risk factors associated with the use of packed red blood cells in elective cardiac surgeries performed at the Hospital das Clínicas, Faculty of Medicine, Botucatu.

Methods: This retrospective study involving 741 individuals was conducted between 2018 and 2021 with the approval of an ethics research committee. Data were analyzed using descriptive statistics, the Chi-square test, and stepwise logistic regression, with the level of significance set at 5 %.

Results and conclusion: Preoperative factors such as female sex (Odds ratio: 9.074; p-value <0.0001), low hematocrit levels (Odds ratio: 7.498; p-value = 0.0034), and the presence of diabetes mellitus (Odds ratio: 1.779; p-value = 0.0318), as well as intraoperative factors such as extracorporeal circulation time greater than 90 min (Odds ratio: 1.68; p-value = 0.0442), were identified as risk factors for excessive bleeding and the need for packed red blood cells during surgery.

© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

E-mail address: patricia.c.garcia@unesp.br (P.C. Garcia-Bonichini).

^{*} Corresponding author at: Hemocentro do Hospital das Clínicas da Faculdade de Medicina de Botucatu, Av. Professor Mário Rubens Guimarães Montenegro, s/n UNESP Campus de Botucatu, 18618687, Botucatu, São Paulo, Brazil.

Introduction

Knowing that transfusion is possible exclusively due to blood donation [1], the rational use of this resource must be evaluated and implemented in blood therapy centers. While transfusions are an undeniable need, several challenges arise. The limited availability of blood components, combined with high costs of procurement, storage, and transfusion, as well as the risks associated with the allogeneic transfusion process – such as transfusion reactions [2–4] - contrasts sharply with the high demand for blood products. This demand is further exacerbated by the constant use of blood components as therapeutic resources, population aging, increasingly restrictive screening criteria [5,6], difficulties in recruiting new donors [3], and festive, climatic and epidemiological events, such as COVID-19 pandemic [7].

Moreover, the irrational use of blood and the failure to minimize unnecessary exposure to blood products [2,8,9] which directly affects already declining stocks, continues to be problems. This issue seems to stem from clinical practices where professionals recommend and approve blood transfusion when other interventions, mainly during the perioperative period, have been shown to be more effective and safer in the treatment of patients [8].

While transfusion of packed red blood cells can be life-saving, it also presents risks to the patient and entails significant costs [2]. These factors disrupt the cost-benefit balance of this type of therapy, underscoring the need for safer and more effective alternatives. In this context, Patient Blood Management (PBM) is particularly relevant given the realities of blood transfusions in Brazil and as recommended by the World Health Organization (WHO) [2].

This program consists of an interdisciplinary, individualized, and multimodal approach based on evidence and medical interventions, when necessary and timely, to maintain the blood mass, minimize the need for allogeneic transfusions, and promote safe and rational use of available blood therapy resources [5,8,10].

To this end, different studies have identified three main strategies or pillars for implementing PBM in healthcare settings: (1) management of the patient's anemia, which includes addressing preoperative anemia through the administration of intravenous or oral iron, for example; (2) minimization of iatrogenic or unnecessary blood loss through bloodsparing surgical techniques, perioperative autologous blood collection and re-transfusion, and the use of hemostatic agents such as antifibrinolytics; and (3) optimization of the patient's specific physiological tolerance to anemia by adhering to transfusion triggers [5,8,9,11].

Regarding the first pillar, literature has shown that the majority of blood transfusions (around 94 %) are due to low preoperative hemoglobin levels (diagnosed in between 20 and 60 % of cases), excessive blood loss during surgery, and iatrogenic transfusion practices [9,12]. These findings are consistent with other studies, which report a prevalence of 22–30 % of preoperative anemia in patients undergoing cardiac surgery. Anemic patients experience worst postoperative outcomes compared to non-anemic patients, including longer hospital stays, higher risk of

infectious complications, increased morbidity, and even mortality [6,12].

One the other hand, the implementation of PBM has been associated with improved perioperative outcomes across various types of surgery, including significant reductions in complications and mortality, particularly among cardiac and orthopedic surgery patients [5,13]. In fact, PBM has contributed to enhanced patient safety, cost savings, and a reduction in hospital readmissions [10].

Recent and important studies emphasize the need for perioperative interventions in cardiac surgeries, as these practices substantially reduce transfusion requirements and are associated with better patient health outcomes [8]. Scientific evidence indicates that the need for transfusions increases the risk of morbidity and mortality in these surgeries. As a result, guidelines from the Society of Cardiovascular Anesthesia recommend promoting interventions that increase red blood cell volume to reduce the risk of transfusions of packed red blood cells [13].

In addition to the preexistence of anemia, several other factors may contribute to an increased risk of excessive bleeding as observed in both literature and unpubliched data [14]. These factors include gender [15,16], age [15–17], systemic arterial hypertension, diabetes mellitus, platelet count, prothrombin activation time, activated partial thromboplastin activation time [17] and the use of medications such as anticoagulants, antiplatelet agents, and non-steroidal anti-inflammatory drugs. The potential suspension of these medications should be carefully considered for each surgery candidate due to individual predisposition to perioperative bleeding [17,18].

Similarly, intraoperative factors — those present during the surgical procedure - can also pose a risk for the transfusion of packed red blood cells. For example, the use of extracorporeal circulation and its duration are already known to be high-risk factors for bleeding, directly influencing the number of allogeneic blood units transfused [16,17,19]. Among the various intraoperative measures identified in the literature, the use of topical or systemic agents such as tranexamic-acid and epsilon-aminocaproic acid stands out. When used appropriately, these agents help prevent excessive blood loss during cardiac surgery [5,20,21].

Therefore, this study aimed to evaluate the risk factors associated with the use of packed red blood cells in elective cardiac surgeries from a PBM perspective. It sought to evaluate the preoperative and intraoperative variables related to increased bleeding during these procedures, considering their significant implications for in-hospital practices and medical protocols in relation to patient care and the use of blood components.

Methods

All activities carried out were approved by the Hospital das Clínicas da Faculdade de Medicina de Botucatu (HCFMB) Research Ethics Committee (opinion 5627,357) recognized by the National Research Ethics Commission, and in accordance with the guidelines outlined in Resolution 466/12 of the

Variables	Operational definitions and criteria for excessive bleeding risk as described in the literature and reference values
Age	Obtained through registration in electronic medical records in preliminary evaluation to surgery. Bleeding risk: elderly ^{15–17}
Sex	Obtained through registration in electronic medical records. Bleeding risk: male 15,16 and female
Systemic arterial hypertension (SAH)	Verified as a clinical diagnosis prior to surgery and previous pathological history recorded in the electronic medical records. Bleeding risk: occurrence ¹⁷
Diabetes Mellitus (DM)	Verified as a clinical diagnosis prior to surgery and previous pathological history recorded in the electronic medical record. Bleeding risk: not characterized ¹⁷
Hemoglobin (Hb) Levels	Obtained from the last laboratory test collected prior to surgery (up to 10 days) and recorded in the electronic medical record. Risk of bleeding: anemia present ⁶ . Reference values: Birth (18.0 \pm 4.0 g/dL), 3 days (18.0 \pm 3.0 g/dL), 1 month (14.0 \pm 2.5 g/dL), 2 months (11.2 \pm 1.8 g/dL), 3 to 6 months (12.6 \pm 1.5 g/dL), 1 year (12.6 \pm 1.5 g/dL), 2 to 6 years (12.6 \pm 1.5 g/dL), 6 to 12 years (12.5 \pm 1.5 g/dL) ²² adult women (14.0 \pm 2.0) and adult men (15.5 \pm 2.0 g/dL). All adopted by HCFMB
Hematocrit (Ht) Levels	Obtained from the last laboratory test collected prior to surgery (up to 10 days) and recorded in the electronic medical record. Bleeding risk: below 30 $\%^{15,17}$. Reference values: Birth (60 \pm 15 $\%$), 3 days (56 \pm 11 $\%$), 1 month (43 \pm 10 $\%$), 2 months (35 \pm 7 $\%$), 3 to 6 months (35 \pm 5 $\%$), 1 year (34 \pm 4 $\%$), 2 to 6 years (37 \pm 3 $\%$), 6 to 12 years (40 \pm 5 $\%$), adult women (41 \pm 5 $\%$) ²² and adult men (47 \pm 6 $\%$). All adopted by HCFMB
Platelet Count (PLT)	Obtained from the last laboratory test collected prior to surgery (up to 10 days) and recorded in the electronic medical record. Bleeding risk: below 150,000 cells/mm ³¹⁷ . Reference value adopted by HCFMB: 140,000 to 440,000 10 ³ /mm ³
Prothrombin activation time	Obtained from the last laboratory test collected prior to surgery (up to 10 days) and recorded in the electronic medical record. Bleeding risk: above 14 s ¹⁷ . Reference value adopted by HCFMB: above 14 s, approximately International Normalized Ratio > 1.2
Activated partial thromboplastin time (APTT)	Obtained from the last laboratory test collected prior to surgery (up to 10 days) and recorded in the electronic medical record. Bleeding risk: above 40 s ¹⁷ . Reference value adopted by HCFMB: above 40 s, with a normal ratio of ≥ 0.70 to 1.25; above > 1.25
Antiplatelet therapy	Verified in medication prescriptions prior to surgery (up to 5 days) recorded in the electronic medical record. Examples of medications: non-steroidal anti-inflammatory drugs (NSAIDs), such as acetylsalicylic acid (AAS), dipyrone and paracetamol; blood thinners, such as warfarin, heparin, and enoxaparing and antiplatelet agents, such as ketoprofen, clopidogrel and cilostazol. Bleeding risk: non-interruption or interruption for <5 days before surgery 11,16-18
History of Covid-19	Obtained in the past history in the years 2020 and 2021 and prior to surgery. Registered in electronic medical records
Type of surgery performed	Recorded in surgical map and electronic medical record. The surgeries analyzed were: Communication closure (intraventricular or interatrial); pacemaker implantation; valve prosthesis implantation; and myocardial revascularization. Risk of bleeding: when ECC is used ^{16,17}
Classification as reoperation	Record in surgical map and history prior to surgery recorded in electronic medical records. Risk of bleed ing: when present ¹⁶
Need for Extracorporeal Circulation	Registered in electronic medical record. Risk of bleeding: when ECC is used 16,17
Extracorporeal Circulation Time	Obtained through electronic medical records after surgery. Bleeding risk: prolonged ECC, around 90–110 min ¹⁵ . Reference Value used by HCFMB: normal up to 90 min ¹⁹
Activated Clotting Time (ACT)	Obtained through electronic medical records after surgery. Reference value used by HCFMB: normal between 80–120 s ¹⁹
Therapy with systemic hemostatic agents	Recorded in electronic medical records with prescription from 5 days before surgery until 1 day after surgery. Medications: tranexamic-acid, epsilon-aminocaproic acid ^{4,5,18,20}

Source: Adapted from Braga & Brandão, 2018, and Souza, 2022 (unpublished data).

National Health Council. This study was conducted at the Transfusion Agency of the Blood Center at the HCFMB.

This retrospective study is based on data collected from surgical and electronic medical records focusing on preoperative and intraoperative factors associated with the use of packed red blood cells in elective cardiac surgeries performed between 2018 and 2021 (Table 1). It is important to note that the reference values used for statistical analysis are those adopted by the hospital.

The main exclusion criteria were unsatisfactory or incomplete data, meaning patients who did not have all the

necessary information for the required parameters; patients with test results that were older than ten days prior to surgery, based on the clinical validity determined by the Laboratory of Clinical Analysis and the Blood Center of the HCFMB, patients who underwent two elective cardiac surgeries simultaneously; and patients who died during surgery, as this event negatively impacted the complete documentation of surgical information and its relevance to the study.

The collected data were subjected to a descriptive analysis, which included the calculation of mean, standard deviation, minimum, maximum, and median values for quantitative

variables, as well as frequencies and percentages for categorized variables. The chi-square test was used to assess associations between the use or non-use of packed red blood cells and the other study variables.

Subsequently, a Logistic Regression (stepwise analysis) was conducted, with the use or non-use of packed red blood cells as the dependent variable and the other variables as explanatory, in order to identify risk factors for the event. A 5 % significance level was applied to all tests, using the SAS 9.4 computer software.

Results

The present study analyzed data from all patients undergoing elective cardiac surgery and who met the inclusion criteria, with a total number of 741 patient records reviewed. The patient's ages ranged from 1–95 years, with a mean age of 61.79 years, a standard deviation of 15.19, and a median age of 63.00 years. These results indicate a higher prevalence of advanced age. Regarding intraoperative parameters, myocardial revascularization surgery was the most common, accounting for 50.88 % of all procedures.

Additionally, more than half of the surgeries (53.31 %) involved the use of extracorporeal circulation, a known major risk factor for bleeding, as reported in the literature. Descriptive statistics for the remaining parameters are presented in Table 2. It is important to note that all patients met the inclusion criteria, and their reference values were based on the hospital's practice for surgeries.

By analyzing the parameters studied and the number of blood bags used in elective cardiac surgeries, an association was found between these factors during the observed period, as shown in Table 2. It is important to note that, only for this statistical analysis, blood bags used to fill the heart-lung system during extracorporeal circulation (when applicable) were excluded from the total count. This was done to ensure that the results solely reflect the transfusion of red blood cell concentrates required to meet the patient's needs in the event of transfusion during the surgical procedure.

Logistic regression was performed using stepwise analysis, with the odds ratio (OR) estimated based on the use or not of packed red blood cells as the response variable and the other factors as explanatory variables. The goals were to identify risk factors for the event. Only four of the evaluated parameters were classified as risk factors, despite other factors being identified as significant by the chi-square test.

The factors associated with a higher risk of requiring transfusions during elective cardiac surgery included female sex (OR: 9.074; 95 % Confidence interval [95 % CI]: 5.218; p-value <0.0001), low hematocrit (OR 7.498; 95 %CI 4.362; p-value = 0.0034), presence of diabetes mellitus (OR 1.779; 95 % CI 1.052; p-value = 0.0318), and cardiopulmonary bypass time exceeding 90 min (OR 1.68; 95 % CI 1.013; p-value = 0.0442).

Discussion

As the prescription for packed red blood cells has become more prevalent in recent years [5,6], the need for a more

attentive and careful approach is urgent. This is not only due to the significant financial burden it places on the hospital system and, in many cases, on the government, but also because of the progressive decline in blood donations [3].

Therefore, there is an urgent need to evaluate the factors associated with the use of packed red blood cells during elective cardiac surgeries, in order to identify risk of excessive intraoperative bleeding and the need for transfusions related to these variables. This highlights the importance of understanding PBM Programs [4–6,9], which are crucial for promoting a significant reduction in transfusions. Such programs can help to avoid unnecessary costs, mitigate risk to patients undergoing transfusion therapy, and ensure better control of blood stocks in the blood bank. It is also important to note the data obtained in this study may aid medical practice by providing insights for surgery teams to more carefully consider patients who present one or more of the risk factors for needing transfusions.

The current research yielded preliminary results indicating a significant relationship between the use or not of packed red blood cells and the following parameters: sex, diabetes mellitus, hemoglobin, hematocrit, non-steroidal anti-inflammatory drugs (acetylsalicylic-acid), type of surgery, reoperation, extracorporeal circulation, duration of extracorporeal circulation, and the use of systemic hemostatic agents (Table 2).

Although all these parameters showed some correlation with the use or not of packed red blood cells during the surgical procedure, a secondary logistic regression analysis revealed that only four were associated with significant risk related to the studied outcome. These variables were female sex, diabetes mellitus, hematocrit below the reference value for age adopted by the study hospital (Table 2) and extracorporeal circulation time exceeding 90 min. This factor may have arisen due to the small sample sizes of certain variables (presence or absence, above, normal or below) which were too limited to establish a reliable correlation when compared to the total number of participants in the study.

Nevertheless, although the current study showed a male predominance (64.1 %) of advanced age patients, with a median age of 63 years, which aligns with similar studies [15,17] that identify these as risk factors for excessive perioperative bleeding, an OR 9.074 (p-value <0.0001) was observed for females. While many studies do not support this finding, it may be closely linked to the higher prevalence of anemia in women [23], which could be associated with sex-specific factors such as menstruation, pregnancy, and lactation.

Despite this, the present study observed an OR 7.498 (p-value = 0.0034) for hematocrit levels below the reference values adopted by the study hospital, strongly suggesting the presence of preoperative anemia. This finding is further supported by the significant data observed for hemoglobin (p-value = 0.0001) and by the comparison of the number of individuals with hemoglobin and hematocrit levels below the reference values who received packed red blood cells during surgery versus those who did not. Specifically, 134 (57.8 %) and 132 (56.9 %) individuals with low hemoglobin and low hematocrit, respectively received blood transfusions, compared to 184 (36.3 %) and 188 (37.2 %) who did not.

This situation is further supported by discussions surrounding PBM Programs, which focus on treating anemia, particularly iron deficiency, given that anemia is widely

Variable	Subvariable	n (%)	Did not receive	Received	p-valu
		(/ 4)	packed red blood cells	packed red blood cells	r .a.a
Sex	Female	266 (35.9 %)	149 (29.3 %)	117 (50.4 %)	<0.0001
	Male	475 (64.1 %)	360 (70.7 %)	115 (49.6 %)	
Systemic arterial hypertension	Present	479 (64.64 %)	323 (63.5 %)	156 (67.2 %)	0.3178
Diabetes mellitus	Absent	262 (35.36 %)	186 (36.5 %)	76 (32.8 %)	0.0000*
Diabetes mellitus	Present Absent	241 (32.52 %) 500 (67.48 %)	153 (30.1 %) 356 (69.9 %)	88 (37.9 %) 144 (62.1 %)	0.0339*
Hemoglobin	Below	318 (43.03 %)	184 (36.3 %)	134 (57.8 %)	<0.0001
Tiemogroom	Above	13 (1.76 %)	9 (1.8 %)	4 (1.7 %)	νο.οσο
	Normal	408 (55.21 %)	314 (61.9 %)	94 (40.5 %)	
Hematocrit	Below	320 (43.36 %)	188 (37.2 %)	132 (56.9 %)	< 0.0001
	Above	14 (1.90 %)	6 (1.2 %)	8 (3.4 %)	
	Normal	404 (54.74 %)	312 (61.7 %)	92 (39.7 %)	
Platelets	Below	39 (5.28 %)	30 (5.9 %)	9 (3.9 %)	0.2774
	Above	8 (1.08 %)	4 (0.80 %)	4 (1.7 %)	
Prothrombin activation time	Normal Above	691 (93.63 %)	472 (93.3 %)	219 (94.4 %)	0.2002
Produrondin activation time	Normal	66 (8.91 %) 675 (91.09 %)	49 (9.6 %) 460 (90.4 %)	17 (7.3 %) 215 (92.7)	0.3082
Activated partial thromboplastin time	Below	246 (33.20 %)	176 (34.6 %)	70 (30.2 %)	0.2298
The trace of partial and an onloop about anno	Above	8 (1.08 %)	7 (1.4 %)	1 (0.4 %)	0.2230
	Normal	487 (65.72 %)	326 (64.0 %)	161 (69.4 %)	
Non-steroidal anti-inflammatory drugs - total	Present	397 (53.58 %)	254 (49.9 %)	143 (61.6 %)	0.003*
	Absent	344 (46.42 %)	255 (50.1 %)	89 (38.4 %)	
Non-steroidal anti-inflammatory drugs - acetylsa-	Present	352 (47.50 %)	224 (44.0 %)	128 (55.2 %)	0.0048*
licylic acid	Absent	389 (52.50 %)	285 (56.0 %)	104 (44.8 %)	
Non-steroidal anti-inflammatory drugs - dipyrone	Present	51 (6.88 %)	35 (6.9 %)	16 (6.9 %)	0.9919
Non staveidal anti inflammatam dunas	Absent	690 (93.12 %)	474 (93.1 %)	216 (93.1 %)	0.6706
Non-steroidal anti-inflammatory drugs - paracetamol	Present Absent	22 (2.97 %) 719 (97.03 %)	16 (3.1 %) 493 (96.9 %)	6 (2.6 %) 226 (97.4 %)	0.6786
Anticoagulant - total	Present	68 (9.18 %)	49 (9.6 %)	19 (8.2 %)	0.5298
Thirteanguinte total	Absent	673 (90.82 %)	460 (90.4 %)	213 (91.8 %)	0.5250
Anticoagulants - Warfarin	Present	3 (0.40 %)	1 (0.2 %)	2 (0.9 %)	0.1858
	Absent	738 (99.60 %)	508 (99.8 %)	230 (99.1 %)	
Anticoagulants - enoxaparin	Present	58 (7.83 %)	44 (8.6 %)	14 (6.0 %)	0.22
	Absent	683 (92.17 %)	465 (91.4 %)	218 (94.0 %)	
Anticoagulants - heparin	Present	8 (1.08 %)	5 (1.0 %)	3 (1.3 %)	0.7042
	Absent	733 (98.92 %)	504 (99.0 %)	229 (98.7 %)	
Antiaggregant - total	Present	14 (1.89 %)	9 (1.8 %)	5 (2.2 %)	0.7197
Antiplatelet agent - ketoprofen	Absent Present	727 (98.11 %) 1 (0.13 %)	500 (98.2 %) 1 (0.20 %)	227 (97.8 %) 0	0.4993
Antiplatelet agent - ketopiolen	Absent	740 (98.87 %)	508 (99.8 %)	232 (100 %)	0.4333
Antiplatelet agent - Cilostazol	Present	3 (0.40 %)	3 (0.6 %)	0	0.2413
. r	Absent	738 (99.60 %)	506 (99.4 %)	232 (100 %)	
Antiplatelet agent - clopidogrel	Present	12 (1.62 %)	7 (1.4 %)	5 (2.2 %)	0.4354
	Absent	729 (98.38 %)	502 (98.6 %)	227 (97.8 %)	
COVID-19	Present	7 (0.94 %)	7 (1.4 %)	0	0.0727
	Absent	734 (99.06 %)	502 (98.6 %)	232 (100 %)	
Type of surgery	Communication closure	30 (4.05 %)	12 (2.4 %)	18 (7.8 %)	<0.0002
	Pacemaker implant	229 (30.9 %)	228 (44.8 %)	1 (0.4 %)	
	Valve prosthesis implantation	105 (14.17 %) 377 (50.88 %)	40 (7.9 %) 229 (45.0 %)	65 (28.0 %) 148 (63.8 %)	
	Revascularization of the myocardium	377 (30.88 %)	223 (43.0 70)	140 (03.0 %)	
Reoperation	Present	115 (15.52 %)	101 (19.8 %)	14 (6.0 %)	< 0.000
	Absent	626 (84.48 %)	, ,	218 (94.0 %)	
Extracorporeal circulation	Present	395 (53.31 %)	, ,	204 (87.9 %)	< 0.000
	Absent	346 (46.69 %)		28 (12.1 %)	
Extracorporeal circulation time	Above	245 (63.97 %)	108 (58.1 %)	137 (69.5 %)	0.0194
A 1 1	Normal	138 (36.03 %)	78 (41.9 %)	60 (30.5 %)	0 ===
Activated clotting time	Below	5 (1.29 %)	2 (1.0 %)	3 (1.5 %)	0.5723
	Above	249 (64.01 %)	118 (61.8 %)	131 (66.2 %)	
Systemic hemostatic agents - total	Normal Present	135 (34.70 %) 2 (0.27 %)	71 (37.2 %) 0	64 (32.3 %) 2 (0.9 %)	0.0359*
by sternic nemostatic agents - total	Absent	2 (0.27 %) 739 (99 73 %)		2 (0.9 %) 230 (99 1 %)	0.0339

Absent

739 (99.73 %) 509 (100 %)

230 (99.1 %)

Table 2 (continued)					
Variable	Subvariable	n (%)	Did not receive packed red blood cells	Received packed red blood cells	p-value
Systemic hemostatic agents - Tranexamic acid	Present Absent	1 (0.13 %) 740 (99.87 %)	0 509 (100 %)	1 (0.4 %) 231 (99.6 %)	0.1383
Systemic hemostatic agents - Epsilon-aminocaproic acid	Present Absent	1 (0.13 %) 740 (99.87 %)	0 509 (100 %)	1 (0.4 %) 231 (99.6 %)	0.1383

The categories 'below', 'above' and 'normal' are related to reference values as adopted by the HCFMB.

- * Statistically significant values, p-value <0,05.
- ** Statistically significant values, p-value <0,0001.

recognized as an important factor contributing to the need for transfusions [5,6,11,15,17]. An additional key factor in this context is the association between preoperative anemia and comorbidities, advanced age, and female gender - all of which are identified as risk factors for adverse outcomes following cardiac surgery [24].

Regarding the duration of extracorporeal circulation exceeding the reference values adopted by the hospital (over 90 min), with an OR 1.68 (p-value = 0.0442), a relationship is observed with findings from other studies [15,16]. This is consistent with the preliminary results of the present study, which also showed significant associations with the use of extracorporeal circulation (p-value <0.001) and the type of surgery performed (p-value <0.001). These findings may be particularly influenced by myocardial revascularization surgery followed by valve prosthesis implantation, which are associated with a prolonged use of extracorporeal circulation.

Cardiopulmonary bypass is potentially one of the main causes of bleeding during the perioperative period due to coagulation disorders and the activation of fibrinolysis, factors that are further exacerbated by prolonged usage. This is also considered one of the primary contributors to bleeding in cardiac surgeries involving extracorporeal circulation [14,21]. Additionally, it is known that patients with a hematocrit below 40 % who require extracorporeal circulation have a higher likelihood of needing blood transfusions during myocardial revascularization surgery, which is a concern regarding the use of blood components [4].

Finally, although the presence of diabetes mellitus was classified for the present study with OR 1.779 (p-value = 0.0318), a finding that contrasts with what is generally reported in the literature [17], this comorbidity is considered prevalent in complicated patients undergoing cardiac surgery [25]. Furthermore, its prevalence is significantly associated with the group of patients who receive transfusions, as seen in various studies, whether related to other diseases or not [26,27].

Thus, it is evident that hyperglycemia is closely linked to cardiovascular events due to chronic inflammation [28], as well as to the occurrence of systemic events, particularly those related to atherosclerosis, which results from the severity and duration of insulin resistance (IR) in diabetic patients [29,30]. Pre-existing anemia [27,31] and altered hemostatic events further contribute to this relationship.

Although the literature presents an extensive range of issues regarding diabetes mellitus, it is still not possible to prove the relationship between the presence of this

comorbidity and the need for transfusions, thus raising speculations on the subject as presented below:

- (1) Anemia: The first proposal highlights the need for transfusions due to pre-existing anemia in diabetic patients. Type 2 diabetes mellitus, due to the hemodilution caused by high glucose levels in the body [31], contributes to reduced hemoglobin and hematocrit values, indicating anemia [27,31]. Two additional sub-proposals included in this item focus on the role of erythropoietin, which may be insufficient in the presence of this comorbidity, especially when considering the hypoxia induced by the disease [31] and the reduction in hemoglobin levels. Furthermore, diabetic patients are more likely to have iron deficiency due to impaired intestinal absorption, which further contributes to anemia, along with an impaired ability to produce erythropoietin in response to decreased hemoglobin [27].
- (2) Vascular complications: It is well established that insulin resistance is strongly associated with endothelial dysfunction, especially when proinsulin levels are elevated, which stimulates the production of plasminogen activator inhibitors and impairs fibrinolysis [29,30]. A study conducted on patients undergoing transcatheter aortic valve implantation found that clinically significant bleeding complications were linked to the presence of diabetes mellitus and associated with vascular diameters [32]. Additionally, the prevalence of hyperfibrinogenemia in patients with type 2 diabetes mellitus, where fibrinogen levels contribute to an increasing cardiovascular risk [33], was observed. This may indirectly relate to the need for transfusions, although this connection has not been extensively discussed in the literature.
- (3) Women: Carotid atherosclerosis caused by diabetes mellitus was found to be more prevalent in women than in men, along with increased oxidative stress and endothelin-1 levels, which contribute to vasoconstriction and platelet aggregation. This leads to a more pro-thrombotic fibrin profile, promoting the formation of denser fibrin clots and prolonged fibrinolysis [34], as well as a higher risk of vascular complications, which are more pronounced in women [35]. These factors are associated with the gender-related findings on the use of packed red blood cells in the present study. Therefore, an important aspect to highlight about women is their concurrent incidence of diabetes mellitus. The explanation for this finding lies in the fact that diabetes mellitus diminishes the development of heart disease and

nephropathies, predisposing them to higher cardiovascular risks compared to men. This is related to genetic factors, endocrine disorders, psychosocial stress, and differing sociocultural behavior between women and men [34].

Although all of the factors mentioned above are clinically significant, it is important to note that, despite the patients in the present study being under medical care shortly before surgery, given that the procedures were classified as elective, many of the individuals were likely not admitted to the hospital immediately prior to the procedure. This may have led to a lack of control over their daily care, particularly concerning the proper use of medication and adherence to the recommended diet for diabetes mellitus.

In addition, body mass index calculations, blood glucose measurements before surgery, and classification between type 1 and 2 diabetes mellitus were not provided, highlighting the absence of important data to better understand the relationship between diabetes mellitus and the need for transfusions.

Finally, it is important to emphasize that, although the literature describes the connection between diabetes mellitus and complications in cardiovascular diseases, there are still no pathophysiological explanations that establish a causal link between the presence of this comorbidity and the need of transfusions, even though this relationship has been observed. Therefore, experimental studies are necessary to offer a clearer explanation of the data observed in the present study.

Conclusion

Preoperative risk factors, such as female sex, decreased hematocrit, and presence of diabetes mellitus, along with intraoperative risk factors, such as the use of extracorporeal circulation for >90 min, have been shown to be associated with the use of packed red blood cells in elective cardiac surgeries conducted between 2018 and 2021.

Financing

This research did not receive any specific grants from public, commercial, or non-profit sector funding agencies.

Conflicts of interest

During the preparation of this work, the author(s) used ChatGPT to improve the translation into English. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.

Acknowledgements

Hemocentro dos Hospital das Clínicas da Faculdade de Medicina de Botucatu for their support in providing the necessary materials for data collection.

REFERENCES

- 1. Ministry of Health, Secretariat of Health Care, Department of Specialized and Thematic Care, General Coordination of Blood and Blood Products. Guide for the use of blood components. MS Publisher; 2015. p. 1–138. www.saude.gov.br.
- Mueller M.M., Van Remoortel H., Meybohm P., et al. Patient Blood Management: Recommendations from the 2018 Frankfurt Consensus Conference. In: JAMA - Journal of the American Medical Association. Vol 321. American Medical Association; 2019:983-997. doi:10.1001/jama.2019.0554
- 3. Roberts DJ, Field S, Delaney M, Bates I. Problems and approaches for blood transfusion in the developing countries. Hematol Oncol Clin North Am. 2016;30(2):477–95. https://doi.org/10.1016/j.hoc.2015.11.011.
- Santos AA dos, Sousa AG, Piotto RF, Pedroso JCM. Mortality risk is dose-dependent on the number of packed red blood cell transfused after coronary artery bypass graft. Braz J Cardiovasc Surg. 2013;28(4):509–17. https://doi.org/10.5935/1678-9741.20130083.
- 5. Althoff FC, Neb H, Herrmann E, et al. Multimodal patient blood management program based on a three-pillar strategy: a systematic review and meta-analysis. Ann Surg. 2019;269(5):794–804. https://doi.org/10.1097/SLA.000000000003095.
- Shander A, Van Aken H, Colomina MJ, et al. Patient blood management in Europe. Br J Anaesth. 2012;109(1):55–68. https://doi.org/10.1093/kiss/aes139.
- Souza MKB de. Blood as an essential therapeutic resource for health systems and the COVID-19 pandemic. Construction of knowledge during the COVID-19 pandemic: biomedical, clinical-care, epidemiological and social aspects. EDUFBA; 2020. https://doi.org/10.9771/9786556300757.015.
- 8. Leahy MF, Roberts H, Mukhtar SA, et al. A pragmatic approach to embedding patient blood management in a tertiary hospital. Transfus (Paris). 2014;54(4):1133–45. https://doi.org/10.1111/trf.12362.
- Shander A, Javidroozi M, Perelman S, Puzio T, Lobel G. From bloodless surgery I'm patient blood management. Mt Sinai J Med. 2012;79(1):56–65. https://doi.org/10.1002/msj.21290.
- Markowitz MA, Waters JH, Ness PM. Patient blood management: a primary theme in transfusion medicine. Transfus (Paris). 2014;54:2587. https://doi.org/10.1111/trf.12862.
- 11. Kumar A. Perioperative management of anemia: limits of blood transfusion and alternatives to it. Cleve Clin J Med. 2009;76(SUPPL. 4). https://doi.org/10.3949/ccjm.76.s 4.18.
- 12. Kotzé A. Pre-optimization of the anaemic patient. Anaesth Intensive CareMed. 2019;20(3):139–41. https://doi.org/10.1016/j.mpaic.2019.01.006 www.bcshguidelines.com.
- Lythgoe J. Implementation of a blood conservation initiative I'm effectively reduce blood transfusions in cardiac surgery patients. Crit Care Nurs Q. 2019;42(2):177–86. https://doi.org/ 10.1097/CNQ.0000000000000251.
- 14. Souza T.M. Pre-operative and Intra-operative Factors Associated with the Use of Packed Red Blood Cell in Elective Cardiac Surgeries During the COVID-19 Pandemic. Bachelor's degreee in Biomedical Sciences. São Paulo State University "Júlio de Mesquita Filho". 2023. http://educapes.capes.gov.br/handle/11449/239165 Results not disclosed.
- Braga DV, Brandão MAG. Diagnosis evaluation of risk for bleeding in cardiac surgery with extracorporeal circulation. Rev Lat Am Nurs. 2018;26. https://doi.org/10.1590/1518-8345-2523-3092
- Miana LA, Atik FA, Moreira LF, et al. Risk factors for postoperative bleeding after adult cardiac surgery. Braz J Cardiovasc Surg. 2004;19(3):280–6. https://doi.org/10.1590/S0102-76382004000300005.

- 17. Alves Júnior L, Rodrigues AJ, Évora PRB, et al. Risk factors in septuagenarians or elderly patients lost coronary artery bypass grafting and or valves operations. rev Bras Cir Cardiovasc. 2008;23(4):550–5. https://doi.org/10.1590/S0102-76382008000400016.
- 18. Dos Santos AA, Da Silva JP, Da Fonseca da Silva L, De Sousa AG, Piotto RF, Baumgratz JF. Therapeutic options to minimize allogeneic blood transfusions and their adverse effects in cardiac surgery: systematic review. Braz J Cardiovasc Surg. 2014;29(4):606–21. https://doi.org/10.5935/1678-9741.20140114.
- Garzesi AM, Garcia LR, Felicio ML. Adult Heart Surg. 2018. https://doi.org/10.29395/978-85-65318-55-6.
- Dietrich W, Spannagl M, Boehm J, et al. Tranexamic acid and aprotinin in primary cardiac operations: an analysis of 220 cardiac surgery patients treated with tranexamic acid or aprotinin. Anesth Analg. 2008;107(5):1469–78. https://doi.org/ 10.1213/ane.0b013e318182252b.
- dos Santos AT, Splettstosser JC, Warpchowski P, Gaidzinski MMP. Antifibrinolytics and cardiac surgery with cardiopulmonary bypass. Rev Bras Anesth. 2007;57(5):549–64. https://doi.org/10.1590/s0034-70942007000500011.
- 22. National Quality Control Program (PNCQ). Hematological reference values for adults and children. www.pncq.org.br; 2017.
- Lamb MAG. Prevalence of pre-operative anemia in patients operated on in a public hospital in the north of brazil. master's title. Federal University of Tocantins; 2019.
- 24. Paparella D, Guida P, Scrascia G, et al. On-pump versus off-pump coronary artery bypass surgery in patients with preoperative anemia. J Thorac Cardiovasc Surg. 2015;149(4). https://doi.org/10.1016/j.jtcvs.2014.12.049. 1018-1026.e1.
- 25. Stoicea N, Arias-Morales CE, Gonzalez-Zacarias AA, et al. Revisiting blood transfusion and predictors of outcome in cardiac surgery patients: a concise perspective. F1000Res. 2017;6:168–74. https://doi.org/10.12688/f1000research.10085.1.
- 26. HR Lee. Predictors of red blood cell transfusion in elderly COVID-19 patients in Korea. Ann Lab Med. 2022;42(6):659–67. https://doi.org/10.3343/alm.2022.42.6.659.

- 27. Mai L, Spilsbury K, Edgar DW, Berghuber A, Wood FM. Increased risk of blood transfusion in patients with diabetes mellitus sustaining non-major burn injury. Burns. 2020;46 (4):888–96. https://doi.org/10.1016/j.burns.2019.10.016.
- 28. Zhang Q, Wu C, Liu Y, et al. Chronicle inflammation plays a role of a bridge between cardiovascular disease and hyperglycemia. Metab Syndr Rep Disord. 2023;21(8):468–74. https://doi.org/10.1089/met.2023.0086.
- 29. Siqueira AFA, Alemida-Pititto B de, Ferreira SRG. Cardiovascular disease in diabetes mellitus: analysis of classical and non-classical risk factors. Arch Bras Endocrinol Metab. 2007;51(2):257–67. https://doi.org/10.1590/S0004-27302007000200014.
- 30. Vague P, Raccah D, Juhan -Vague I. Hemobiology, vascular disease, and diabetes with special reference I'm impaired fibrinolysis. Metabolism. 1992;41(5):2–6. https://doi.org/10.1016/0026-0495(92)90085-o.
- 31. Kanbay M, Tapoi L, Ureche C, et al. Effect of sodium—glucose cotransporter 2 inhibitors on hemoglobin and hematocrit levels in type 2 diabetes: a systematic review and meta-analysis. Int Urol Nephrol. 2022;54(4):827–41. https://doi.org/10.1007/s11255-021-02943-2.
- Sari C, Ayhan H, Aslan AN, et al. Predictors and incidence of access site complications in transcatheter aortic valve deployment with the use of new delivery systems. Perfus (U K). 2015;30(8):666–74. https://doi.org/10.1177/0267659115578002.
- 33. Bembde AS. A study of plasma fibrinogen level in type-2 diabetes mellitus and its relation I'm glycemic control. Indian J Hematol Blood Transfus. 2012;28(2):105–8. https://doi.org/10.1007/s12288-011-0116-9.
- 34. Kautzky-Willer A, Harreiter J, Pacini G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev. 2016;37(3):278–316. https://doi.org/10.1210/er.2015-1137.
- 35. Maric-Bilkan C. Sex differences in micro- and macro-vascular complications of diabetes mellitus. Clin Sci. 2017;131(9):833–46. https://doi.org/10.1042/CS20160998.

HEMATOLOGY, TRANSFUSION AND CELL THERAPY

www.htct.com.br

Original article

Haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide in the public Chilean national health system: A single center study

Barbara Puga (a,b,*, Francisca Bass a, Javiera Molina a, Rafael Benavente a,b, Alejandro Andrade a, Alejandro Majlis a, María Elena Cabrera (b, Mi Kwon c, Mi Kwon c,

- ^a Intensive Hematology Unit, Hospital del Salvador, Santiago, Chile
- ^b Internal Medicine Department, University of Chile, Santiago, Chile

ARTICLE INFO

Article history:
Received 25 May 2024
Accepted 7 July 2025
Available online 17 September 2025

Keywords

Haploidentical transplantation Peripheral blood stem cell transplantation Acute graft-versus-host disease Chronic graft-versus-host disease

ABSTRACT

Introduction: Haploidentical peripheral stem cell transplantation with post-transplant cyclophosphamide is the most common modality in low-and-middle-income countries. This article reports the consecutive adult patients who received this modality of transplant in a single center in Chile between 2016-2021.

Methods: The primary outcome was overall survival. Secondary outcomes were event-free survival, II-IV acute graft-versus-host disease at Day +100, chronic graft-versus-host disease at two years and cumulative incidence of relapse.

Results: The median age was 25 years (Range: 15-51), and 65 % of patients were male. Ninety-four percent had a neoplastic disease (77/82), with the most common diagnosis being acute lymphoblastic leukemia (57 %). Forty-seven percent proceeded to transplant in the first complete response. Conditioning was mostly myeloablative (96 %). Primary graft failure and poor graft function were observed in 1.2 % and 13 %, respectively with five patients (6.1 %) dying before engraftment. Grade II-III acute graft-versus-host disease was seen in 29 % and chronic graft-versus-host disease was 41 % of the patients. With a median follow-up of 33 months (Range: 1-84), the estimated three-year overall survival and event-free survival were 68.3 % (95 % CI: 59–79 %) and 64.6 % (95 % CI: 55–76 %), respectively. The three-year cumulative incidence of relapse was 23 % (95 % CI: 15–33 %).

Conclusion: These results demonstrate encouraging survival outcomes and acceptable rates of graft-versus-host disease following haploidentical peripheral stem cell transplantation with post-transplant cyclophosphamide, suggesting its potential as a feasible option in low-resource settings.

© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

E-mail address: bpuga@hsalvador.cl (B. Puga).

^c Stem Cell Transplant Unit, Hospital Gregorio Marañón, Madrid, Spain

^{*} Corresponding author at: Guillermo Acuña 2755, Providencia, Santiago, PD, 750000, Chile.

Introduction

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) offers a therapeutic option for varied neoplastic and non-neoplastic hematologic diseases. In patients without a matched sibling donor (MSD), alternative sources like HLA-matched unrelated donors (MUD) or umbilical cord, have extended the access to this therapy, but usually associated with a longer latency, and higher complexity and cost. In this context, the option of haploidentical (Haplo) related donors identifies suitable donors for almost 95 % of patients. This alternative source has become a valid option for ethnic minorities and for low- and middle-income countries (LMIC) with limited access to MUD.

Haplo-HSCT was introduced in Chile for the first time at the Luis Calvo Mackenna Children Hospital, with technological support of the St. Jude Children's Research Hospital providing encouraging results. However, the complexity and cost of ex-vivo T-lymphocyte depletion prevented its widespread use [1,2]. In 2001, investigators from Johns Hopkins Hospital published a Phase I/II trial of Haplo-HSCT with in-vivo T-lymphocyte depletion with post-transplant cyclophosphamide (Haplo-PTCy) [3]. Using this platform, meta-analysis and nonrandomized studies have shown similar or even, better results, when Haplo donors are compared with MSD and MUD [4-7]. These results explain why this modality of hematopoietic stem cell transplantation (HSCT) has increased worldwide [8,9]. In 2020, Sarmiento et al. reported the first local series including 49 cases in a private institution with a threeyear overall survival (OS) of 48 % [10]. At the public level, a national adult HSCT program for public health insurance patients, was implemented in 2010. Limited transplantation teams and budgets forced to impose important access limitations in age and donor type. At the beginning only allo-HSCT recipients up to 40 years old with an MSD were included. MUD transplantation was not considered given its high cost and the low chance of successful searches for ethnic minorities, like those of Chile. In 2016, Haplo-PTCy was incorporated for patients up to 40 years of age, and expanded up to 60 years in 2019. The aim of this study is to describe the outcomes of the first 82 consecutive adult Haplo-PTCy transplants between 2016-2021 at the main public center of the Chilean national HSCT program.

Materials and methods

Patients

All patients that received an Haplo-PTCy at the Intensive Hematological Unit, Hospital del Salvador, from 2016 to 2021 were included. As mentioned, all cases belonged to the national HSCT program, and were approved by a national adult HSCT committee following a specific Haplo-HSCT protocol established in 2016. Inclusion criteria were age \geq 15 and \leq 40 from 2016-2018 and \leq 60 years old since 2019, Eastern Cooperative Oncology Group (ECOG) performance status <3, no concomitant active cancer, and adequate organ function. For patients with acute leukemias, complete response before

transplantation was mandatory. This study was performed according to the Helsinki declaration and was approved by the institutional ethics committee.

Endpoint and definitions

The main endpoints were event-free survival (EFS), OS, cumulative incidence of relapse (CIR), non-relapse mortality (NRM) at two years and graft-versus-host disease (GvHD)-free, relapse-free survival (GRFS) at one year after transplantation. Secondary endpoints were incidence of Grade II-IV acute graft-versus-host disease (aGvHD) at Day +100 and chronic GvHD (cGvHD) at two years. OS was calculated from the day of infusion until the last visit or death by any cause. Glucksberg criteria were used for aGvHD [11,12]. Chronic GvHD was graded using the National Institutes of Health (NIH) criteria [13]. NRM was defined as death from any cause other than relapse. EFS was calculated from the day of infusion until the day of relapse, graft failure or death. GRFS was defined as one year post-transplant survival without Grade III-IV aGvHD, systemic therapy required for cGvHD, relapse, or death.

The haploidentical donor was defined based on molecular techniques for HLA-A, HLA-B and HLA-DRB1 loci. Disease stage at the time of transplantation was classified by the Disease Risk Index (DRI) [14]. The hematopoietic cell transplantation-specific comorbidity index (HCT-CI) was used to stratify patients according to pre-transplant comorbidities [15].

Myeloablative conditioning (MAC) was defined as a regimen containing either total body irradiation with a dose greater than 6 Gy, a total dose of oral busulfan greater than 8 mg/kg bodyweight, or a total dose of intravenous busulfan >6.4 mg/kg bodyweight [16].

Cytokine release syndrome (CRS) was defined as post-infusion fever up to Day +6, with no clinical focus nor microbiologic agent identified and classified according to Lee (Supplementary Table 1) [17]. Neutrophil engraftment was defined as the first day of an absolute neutrophil count \geq 0.5 \times 10⁹/L lasting for three or more consecutive days and platelet engraftment as $\geq 20.0 \times 10^9 / L$ for five consecutive days without transfusional support. Graft failure (GF) was defined as either lack of initial engraftment of donor cells (primary graft failure) or loss of donor cells after initial engraftment (secondary graft failure) with donor chimerism ≤5 %. Engraftment syndrome (ES) was defined as the presence of fever, weight gain, skin rash, and/or respiratory distress according to Spitzer classification [18]. Poor graft function (PGF), as frequent dependence on blood and/or platelet transfusions and/ or growth factor support with donor chimerism >5 % in the absence of relapse, drugs, or infections [19]. Quality of life was evaluated based on Karnofsky performance scale.

Treatment

Hematopoietic progenitors were obtained from unmanipulated peripheral blood mobilization. The best donor was selected, prioritizing negative specific anti-HLA antibodies (DSA) and crossmatch: age <40 years, male gender, ABO compatibility and lower parity of female donor. The conditioning protocols are shown in Table 1 [20–23].

Table 1 – Patient and transplantation characteristics (n = 82).

Age, median (years) - n (range) Male sex - n (%) Disease - n (%) ALL AML/MDS SAA AML/MDS SAA PNH PNH 2 (2) HL 2 (2) CML BPDCN DRI - n (%) Low 9 (11) Intermediate High Not assessed 4 (56) High Type of conditioning - n (%) Flu (120 mg/m²) TBI (6×2Gy) Bu (16 mg/kg/PO) Flu (120 mg/m²) Cy (120 mg/kg) TBI (2×6Gy) Bu (16 mg/kg/PO) Cy (120 mg/kg) Flu (150 mg/m²) Cy (29 mg/kg) Flu (25 gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* Donor relationship - n (%) Sibling Parent Donor-Specific Antibodies - n (%) Nogative Positive Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor Major/bidirectional Donor/Receptor CMV status - n (%) D+/R+ D-/R+ A (47 (57) Ad (47 (57) A (5) A (47 (57) A (5) A (47 (57) A (5) A (47 (57) A (57 (5) A (57 (5) A (68 (5) A (7		n, (%)
Disease - n (%) ALL 47 (57) AMI/MDS 25 (31) SAA 3 (4) PNH 2 (2) HIL 2 (2) CML 2 (2) BPDCN 1 (1) DRI - n (%) Low 9 (11) Intermediate 46 (56) High 25 (30) Not assessed 2 (2) HCT-CI - n (%) Low 60 (75) Intermediate 17 (21) High 4 (5) Type of conditioning - n (%) Flu (120 mg/m²) TBI (6×2Gy) 34 (41) Bu (16 mg/kg/PO) Flu (120 mg/m²) 26 (32) Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m2) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* 3 (4) Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 10 noor/Receptor CMV status - n (%) D+/R- D+/R- D+/R- D-/R+ 8 (10) D-/R+ 70 (85)	Age, median (years) - n (range)	25 (15-51)
ALL 47 (57) AML/MDS 25 (31) SAA 3 (4) PNH 2 (2) HL 2 (2) CML 2 (2) BPDCN 1 (1) DRI - n (%) Low 9 (11) Intermediate 46 (56) High 25 (30) Not assessed 2 (2) HCT-CI - n (%) Low 60 (75) Intermediate 17 (21) High 4 (5) Type of conditioning - n (%) Flu (120 mg/m²) TBI (6×2Gy) 34 (41) Bu (16 mg/kg/PO) Flu (120 mg/m²) 26 (32) Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m2) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+//R+ 70 (85) D+//R- 8 (10) D-//R+ D-//R+ 70 (85)	Male sex - n (%)	56 (68)
AMI/MDS 25 (31) SAA 3 (4) PNH 2 (2) HL 2 (2) HL 2 (2) BPDCN 1 (1) DRI - n (%) Low 9 (11) Intermediate 46 (56) High 25 (30) Not assessed 2 (2) HCT-CI - n (%) Low 60 (75) Intermediate 17 (21) High 4 (5) Type of conditioning - n (%) Flu (120 mg/m²) TBI (6×2Gy) 34 (41) Bu (16 mg/kg/PO) Flu (120 mg/m²) 26 (32) Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m2) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* 3 (4) Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ 70 (85) D+/R- D-/R+ 8 (10)	Disease - n (%)	
SAA 3 (4) PNH 2 (2) HL 2 (2) HL 2 (2) BPDCN 1 (1) DRI - n (%) Low 9 (11) Intermediate 46 (56) High 25 (30) Not assessed 2 (2) HCT-CI - n (%) Low 60 (75) Intermediate 17 (21) High 4 (5) Type of conditioning - n (%) Flu (120 mg/m²) TBI (6×2Gy) 34 (41) Bu (16 mg/kg/PO) Flu (120 mg/m²) 26 (32) Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m2) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* 3 (4) Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 17 (21) Other 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ 70 (85) D+/R- D-/R+ 8 (10)	ALL	47 (57)
PNH 2 (2 (2) HL 2 (2) EPDCN 1 (1) DRI - n (%) Low 9 (11) Intermediate 46 (56) High 25 (30) Not assessed 2 (2) HCT-CI - n (%) Low 60 (75) Intermediate 17 (21) High 4 (5) Type of conditioning - n (%) Flu (120 mg/m²) TBI (6×2Gy) 34 (41) Bu (16 mg/kg/PO) Flu (120 mg/m²) 26 (32) Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m2) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* 3 (4) Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ 70 (85) D+/R- D-/R+ 8 (10) D-/R+	AML/MDS	25 (31)
HL 2 (2) CML 2 (2) BPDCN 1 (1) DRI - n (%) Low 9 (11) Intermediate 46 (56) High 25 (30) Not assessed 2 (2) HCT-CI - n (%) Low 60 (75) Intermediate 17 (21) High 4 (5) Type of conditioning - n (%) Flu (120 mg/m²) TBI (6×2Gy) 34 (41) Bu (16 mg/kg/PO) Flu (120 mg/m²) 26 (32) Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) 3 (4) Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 70 (85) Delta (10) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ 70 (85) D+/R- D-/R+ 8 (10) D-/R+ B (10)	SAA	3 (4)
CML 2 (2) BPDCN 1 (1) DRI - n (%) Low 9 (11) Intermediate 46 (56) High 25 (30) Not assessed 2 (2) HCT-CI - n (%) Low 60 (75) Intermediate 17 (21) High 4 (5) Type of conditioning - n (%) Flu (120 mg/m²) TBI (6×2Gy) 34 (41) Bu (16 mg/kg/PO) Flu (120 mg/m²) 26 (32) Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m2) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ 70 (85) D+/R- D-/R+ 8 (10) D-/R+	PNH	2 (2)
BPDCN DRI - n (%) Low 9 (11) Intermediate 46 (56) High 25 (30) Not assessed 2 (2) HCT-CI - n (%) Low 60 (75) Intermediate 17 (21) High 4 (5) Type of conditioning - n (%) Flu (120 mg/m²) TBI (6×2Gy) 34 (41) Bu (16 mg/kg/PO) Flu (120 mg/m²) 26 (32) Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m2) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ 70 (85) D+/R- D-/R+ 8 (10) D-/R+	HL	2 (2)
DRI - n (%) Low 9 (11) Intermediate 46 (56) High 25 (30) Not assessed 2 (22) HCT-CI - n (%) Low 60 (75) Intermediate 17 (21) High 4 (5) Type of conditioning - n (%) Flu (120 mg/m²) TBI (6×2Gy) 34 (41) Bu (16 mg/kg/PO) Flu (120 mg/m²) 26 (32) Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m2) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ D+/R- D-/R+ 8 (10) D-/R+	CML	2 (2)
Low 9 (11) Intermediate 46 (56) High 25 (30) Not assessed 2 (22) HCT-CI - n (%) Low 60 (75) Intermediate 17 (21) High 4 (5) Type of conditioning - n (%) Flu (120 mg/m²) TBI (6×2Gy) 34 (41) Bu (16 mg/kg/PO) Flu (120 mg/m²) 26 (32) Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m2) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* 3 (4) Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ D+/R- D-/R+ Si (10) D-/R+ Si (10)	BPDCN	1 (1)
Intermediate 46 (56) High 25 (30) Not assessed 2 (22) HCT-CI - n (%) Low 60 (75) Intermediate 17 (21) High 4 (5) Type of conditioning - n (%) Flu (120 mg/m²) TBI (6×2Gy) 34 (41) Bu (16 mg/kg/PO) Flu (120 mg/m²) 26 (32) Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m2) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ D+/R- D-/R+ 8 (10) D-/R+ Si (10)	DRI - n (%)	
High 25 (30) Not assessed 2 (22) HCT-CI - n (%) Low 60 (75) Intermediate 17 (21) High 4 (5) Type of conditioning - n (%) Flu (120 mg/m²) TBI (6×2Gy) 34 (41) Bu (16 mg/kg/PO) Flu (120 mg/m²) 26 (32) Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m2) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ 70 (85) D-/R+ 8 (10) D-/R+ 3 (4)	Low	9 (11)
Not assessed 2 (2) HCT-CI - n (%) Low 60 (75) Intermediate 17 (21) High 4 (5) Type of conditioning - n (%) Flu (120 mg/m²) TBI (6×2Gy) 34 (41) Bu (16 mg/kg/PO) Flu (120 mg/m²) 26 (32) Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m2) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ D+/R- D-/R+ 8 (10) D-/R+	Intermediate	46 (56)
HCT-CI - n (%) Low 60 (75) Intermediate 17 (21) High 4 (5) Type of conditioning - n (%) Flu (120 mg/m²) TBI (6×2Gy) 34 (41) Bu (16 mg/kg/PO) Flu (120 mg/m²) 26 (32) Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m2) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ D+/R- D-/R+ 8 (10) J (41)	High	25 (30)
Low 60 (75) Intermediate 17 (21) High 4 (5) Type of conditioning - n (%) Flu (120 mg/m²) TBI (6×2Gy) 34 (41) Bu (16 mg/kg/PO) Flu (120 mg/m²) 26 (32) Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m2) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* 3 (4) Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ D+/R- D-/R+ 8 (10) D-/R+ 3 (4)	Not assessed	2 (2)
Intermediate High 4 (5) Type of conditioning - n (%) Flu (120 mg/m²) TBI (6×2Gy) Bu (16 mg/kg/PO) Flu (120 mg/m²) Cy (120 mg/kg) TBI (2×6Gy) Bu (16 mg/kg/PO) Cy (120 mg/kg) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m²) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* Donor relationship - n (%) Sibling Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor Major/bidirectional Donor/Receptor CMV status - n (%) D+/R+ D+/R- D-/R+ 8 (10) D-/R+ 14 (5) 34 (41) 34 (41) 34 (41) 34 (41) 34 (41) 34 (41) 34 (41) 46 (5) 34 (41) 34 (41) 34 (41) 46 (5) 34 (41) 46 (5) 34 (41) 47 (21) 48 (5) 34 (41) 49 (60) 49 (60) 49 (60) 49 (60) 71 (87) 70 (87) 80 (84) 81 (10) 81 (10) 81 (10)	HCT-CI - n (%)	
High 4 (5) Type of conditioning - n (%) Flu (120 mg/m²) TBI (6×2Gy) 34 (41) Bu (16 mg/kg/PO) Flu (120 mg/m²) 26 (32) Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m2) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* 3 (4) Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ D+/R- D-/R+ 3 (4)	Low	60 (75)
Type of conditioning - n (%) Flu (120 mg/m²) TBI (6×2Gy) 34 (41) Bu (16 mg/kg/PO) Flu (120 mg/m²) 26 (32) Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m2) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* 3 (4) Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ 70 (85) D-/R+ 8 (10) D-/R+ 3 (4)	Intermediate	17 (21)
Flu (120 mg/m²) TBI (6×2Gy) 34 (41) Bu (16 mg/kg/PO) Flu (120 mg/m²) 26 (32) Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m2) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* 3 (4) Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ 70 (85) D-/R+ 8 (10) D-/R+ 3 (4)	High	4 (5)
Bu (16 mg/kg/PO) Flu (120 mg/m²) 26 (32) Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m²) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* 3 (4) Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ D+/R- D-/R+ 8 (10) D-/R+ 3 (4)	Type of conditioning - n (%)	
Cy (120 mg/kg) TBI (2×6Gy) 10 (12) Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m²) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* 3 (4) Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ 70 (85) D-/R+ 8 (10) D-/R+ 3 (4)	Flu (120 mg/m²) TBI (6×2Gy)	34 (41)
Bu (16 mg/kg/PO) Cy (120 mg/kg) 5 (6) Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m²) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* 3 (4) Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ 70 (85) D-/R+ 8 (10) D-/R+ 3 (4)	Bu (16 mg/kg/PO) Flu (120 mg/m 2)	26 (32)
Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m²) 4 (5) TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ 70 (85) D-/R+ 8 (10) D-/R+ 3 (4)	Cy (120 mg/kg) TBI (2×6Gy)	10 (12)
TBI (2 Gy)* Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* 3 (4) Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ 70 (85) D-/R+ 8 (10) D-/R+ 3 (4)	Bu (16 mg/kg/PO) Cy (120 mg/kg)	5 (6)
Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)* 3 (4) Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ 70 (85) D-/R+ 8 (10) D-/R+ 3 (4)	Flu (150 mg/m²) Cy (29 mg/kg) ATG (7.5 mg/m2)	4 (5)
Donor relationship - n (%) Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) 71 (87) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) 09 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) 70 (85) D+/R+ 8 (10) D-/R+ 3 (4)	, , , , , , , , , , , , , , , , , , , ,	
Sibling 49 (60) Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) 71 (87) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) 70 (85) D+/R+ 8 (10) D-/R+ 3 (4)	Bu (8 mg/kg/oral) Flu (150 mg/m²) Cy (29 mg/kg)*	3 (4)
Parent 17 (21) Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ 70 (85) D+/R- 8 (10) D-/R+ 3 (4)	Donor relationship - n (%)	
Other 16 (19) Donor-Specific Antibodies - n (%) Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ 70 (85) D+/R- 8 (10) D-/R+ 3 (4)	Sibling	49 (60)
Donor-Specific Antibodies - n (%) Negative	Parent	17 (21)
Negative 71 (87) Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) 70 (85) D+/R+ 8 (10) D-/R+ 3 (4)	Other	16 (19)
Positive 1 (1) Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ 70 (85) D+/R- 8 (10) D-/R+ 3 (4)	Donor-Specific Antibodies - n (%)	
Not assessed 10 (12) ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ 70 (85) D+/R- 8 (10) D-/R+ 3 (4)	9	71 (87)
ABO Incompatibility - n (%) No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) D+/R+ 70 (85) D+/R- 8 (10) D-/R+ 3 (4)	Positive	1 (1)
No/Minor 69 (84) Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%)	Not assessed	10 (12)
Major/bidirectional 13 (16) Donor/Receptor CMV status - n (%) 70 (85) D+/R+ 8 (10) D-/R+ 3 (4)	ABO Incompatibility - n (%)	
Donor/Receptor CMV status - n (%) 70 (85) D+/R+ 8 (10) D-/R+ 3 (4)		69 (84)
D+/R+ 70 (85) D+/R- 8 (10) D-/R+ 3 (4)	Major/bidirectional	13 (16)
D+/R- 8 (10) D-/R+ 3 (4)	Donor/Receptor CMV status - n (%)	
D-/R+ 3 (4)		٠, ,
	D+/R-	8 (10)
D-/R- 1 (1)		1.1
	D-/R-	1 (1)

ALL: Acute lymphoblastic Leukemia; AML/MDN: Acute Myeloid Leukemia/myelodysplastic neoplasms; SAA: Severe Aplastic Anemia; CML: Chronic Myeloid leukemia; PNH: Paroxysmal Nocturnal Hemoglobinuria; HL: Hodgkin Lymphoma; BPDCN: Blastic Plasmacytoid Dendritic Cell Neoplasm; PBSC Peripheral Blood Stem Cell; *: Reduced Intensity Conditioning; PO: orally; FLU Fludarabine; TBI Total Body Irradiation; Bu Busulfan; ATG Thymoglobulin; Cy Cyclophosphamide; GVHD Graft versus Host Disease; CNI Calcineurins; MMF Mycophenolate Mofetil; PT-Cy Post Transplant Cyclophosphamide; D donor; R recipient.

Patients were hospitalized in individual isolation units with positive pressure and 4th generation high efficiency particulate air filters and were assisted by a multidisciplinary Intensive Hematology team. According to the institutional protocol, filgrastim 300 mcg/d sc was universally used from Day +5 until absolute neutrophil count (ANC) >1000.

Additional filgrastim, erythropoietin and eltrombopag were allowed if sustained or progressive cytopenias due to infections, drug toxicity, PGF or GF were observed.

Acute GvHD prophylaxis was performed with cyclosporine aiming at levels between 250 and 350 ng/mL from Day +5, mycophenolate 1 g every 8 h orally from Day +5 to Day +35 and in vivo T-cell depletion with cyclophosphamide 50 mg/kg bodyweight iv, on Days +3 and +4 [24].

Antibacterial prophylaxis with ciprofloxacin, acyclovir and fluconazole was used. Febrile neutropenia was managed according to the institutional protocol. Acute GvHD was treated according to its severity. Briefly, global Stage I cases were observed or treated with topical or low-dose systemic steroids (equivalent to prednisone 0.5 mg/kg bodyweight/day). Stage II were treated with standard dose steroids (prednisone 1 mg/kg bodyweight/dose). For Stage III-IV aGvHD, high-dose steroids (prednisone 2 mg/kg bodyweight/dose) were used as first line and calcineurin inhibitors were optimized or restarted. If no response was achieved, mycophenolate or methotrexate was used as second-line treatments. Ruxolitinib was not available during the study period.

Discharge was indicated when engraftment, full oral medication and fluid intake >2.5 L/24 h were achieved. Cyclosporine levels were monitored weekly and cytomegalovirus (CMV) by real time polymerase chain reaction (RT-PCR) biweekly until Day +100. CMV reactivation was defined as a viral load exceeding 1000 copies/mL. CMV disease was diagnosed in cases of clinical signs and symptoms. Preemptive treatment with valganciclovir was used as the first choice in cases of CMV reactivation. Ganciclovir was used in CMV disease. Foscarnet was used in case of severe cytopenias or ganciclovir refractoriness.

Statistical analysis

All epidemiological data and clinical characteristics of the patients were expressed as frequencies with percentages for categorical variables and the mean with range for numeric variables. OS and EFS were estimated using the Kaplan-Meier method. The cumulative incidence of relapse was calculated using relapse as the primary event and death without relapse as a competing event. R software was used for statistical analysis.

Results

The characteristics of patients, donors and conditioning regimens are shown in Table 1. Eighty-five haploidentical transplants were performed during the period of analysis. Three second Haplo-PTCy were excluded. Mean age was 25 years (Range: 15-51 years), 94 % (77/82) were for neoplastic diseases with the most common diagnosis (57 %) being acute lymphoblastic leukemia. Sixty-one percent of patients underwent transplants less than one year after diagnosis and 47 % proceeded to transplant in the first complete response. Most patients (76 %) had low-risk HCT-CI scores. Conditioning was mostly myeloablative (96 %). The median number of CD34 $^+$ cells infused was 8.02 \times 10 6 /kg bodyweight (Range: 2.42-10.02 \times 10 6 /kg bodyweight). No patient needed a

desensitization regimen. All patients received aGvHD prophylaxis with the planned protocol. PHSP were used in all patients, including those with non-malignant diseases, to reduce the risk of graft failure and to avoid the risk of SARS-CoV2 transmission during the pandemic [25].

Early post-transplantation events

Grade 1-2 CRS was seen in 83 % however no Grade 3-4 CRS was observed. Almost all (98 %) patients had mucositis and 61 % needed parenteral nutrition, with a median duration of 11 days (Range: 2-29 days). All patients had at least one FN episode, 56 % with a gastrointestinal focus. Bacteremia was observed in 23 % of the patients, with Staphylococcus epidermidis being the most common agent. Eighteen percent of patients had a probable invasive aspergillosis.

Neutrophil engraftment was achieved in 96 % of patients, (Median: Day +17; Range: 11-25). Platelet engraftment (>20 \times 10 9 /L) was achieved in 95 %, (Median: Day +19; Range: 9-84) and platelets >50 \times 10 9 /L (Median: Day +19; Range: 10-175). PGF was observed in 11 (13 %) patients. Eltrombopag was used in 37 %.

Criteria for ES were identified in 21 (26 %) patients; two patients required low-dose vasopressor drugs or non-invasive ventilatory support, both for less than 48 hours. All patients had a good response with low dose steroids. No mortality was observed.

The incidence of Grade II-IV aGvHD and Grade III-IV at 100 days were 29 % and 5 %, respectively. Grade IV was not observed (Table 2). The median onset was on Day +31 (Range: 13-83): most (89 %) had a good response to oral prednisone (0.5-1 mg/kg bodyweight) with only three (4 %) receiving 2 mg/kg bodyweight. Mycophenolate was used as the second line in four patients and methotrexate in one.

Table 2 – Acute Graft-Versus-Host staging (n = 82).

	•
	n (%)
Skin aGVHD	40 (49)
I	17 (21)
II	12 (15)
III	11 (13)
IV	0 (0)
Liver aGVHD	2 (2)
I	0 (0)
II	2 (2)
III	0 (0)
IV	0 (0)
Upper gastrointestinal aGVHD	30 (37)
I	27 (33)
II	3 (4)
III	0 (0)
IV	0 (0)
Lower gastrointestinal aGVHD	4 (5)
I	1 (1)
II	2 (2)
III	1 (1)
IV	0 (0)

Data is presented in simple rates at Day +100, and using the Glucksberg criteria (see text).

aGVHD: Acute Graft-versus-Host Disease.

The present cohort showed a two-year incidence of cGvHD of 41 % (31/75) with a median time of presentation on Day +187 (Range: 112-562). Nine (12 %) patients developed moderate-to-severe cGvHD requiring systemic treatment. Overall, complete response was observed in 25 (33.3 %), and partial response in 5 (6.7 %) patients with one patient presenting progressive disease. There were two cGvHD -related deaths, one due to refractory pulmonary cGvHD and one with systemic progression due to poor treatment compliance.

Cytomegalovirus (CMV) reactivation was observed in 63 % (50/82) of patients at a median of Day +37 (Range: 15-77). Of these patients, four developed CMV disease. The median viral load for these reactivations was 1595 copies/mL (Range: 39-87,000). Treatment with valganciclovir was effective in 66 % of cases. Four patients required treatment with ganciclovir, and one patient received foscarnet. Three patients (4 %) developed post-transplant lymphoproliferative disorder, with one requiring chemotherapy.

Main endpoints

With a median follow-up of 33 months (Range: 1-84), the estimated three-year EFS and OS of the whole cohort were 64.6 % (95 % confidence interval [95 % CI]: 55-76 %) and 68.3 % (95 % CI: 59-79 %), respectively. Patients with neoplastic disease (n = 77), had a three-year CIR of 23 % (95 % CI: 15-33 %). The two-year NRM cumulative incidence was 13.4 % (95 % CI: 12.2-14.8 %). GRFS at one year was 40.2 % (Figure 1).

Cause of death

As a whole, 26 patients died, 16 due to relapse at a median Day +250 (Range: 81-510), eight due to transplant related mortality (three to sepsis before engraftment from Klebsiella pneumoniae carbapenemase-producing bacteria when specific antibiotic therapy was not available, two due to secondary GF, one on Day +53 due to aGvHD and two on Days +273 and +276 due to cGvHD). Two patients died due COVID-19 pneumoniae on Days +97 and +228.

Discussion

This is the first account of Haplo-PTCy in the public health system in Chile. It reports the experience in 82 consecutive patients, showing that it is a feasible and safe procedure to be considered in the absence of an MSD.

These results are encouraging, similar to other adult cohorts using peripheral blood stem cells [7,25–30]. The two-year OS in those studies range between 57- 68 %, while our cohort shows a 3-year OS of 68 %. Regarding aGvHD, the incidence of Grade II-IV aGvHD was also consistent with the results previously reported by other groups, ranging from 18–42 % globally, and 8–14 % for Grade III-IV, compared with 29 % and 5 % in the preset study, respectively. The two-year cumulative NRM incidence of 0.134 is also similar to that reported in the same studies (16–28 %), as well the two-year CIR of 0.22 (Range: 17–36 %). Finally, our study also shows a good quality of life after Haplo-PTCy with a one-year GRFS of 40 %, compared with 23–43 % in the literature.

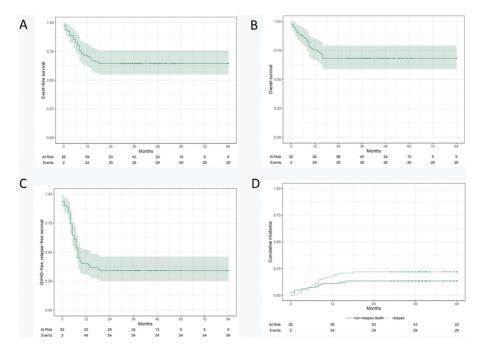


Fig. 1 - Overall survival (A), event-free survival (B), GVHD-free, relapse-free survival (C) and non-relapse mortality (D).

When comparing the OS, EFS, CIR and GRFS of the current study to the aforementioned reports, one must consider that this was a carefully selected cohort of young patients. The median age was 25 years (compared to 41-60 years in other studies), and all patients met strict response criteria before transplantation (every patient with acute leukemia was in CR). These variables have been consistently identified as significant good risk factors for OS and EFS after HSCT [15,31,32]. Furthermore, studies of Haplo-PTCy in children with acute lymphoblastic leukemia, with a median age of 10-12 years, from Spain and China, have shown OS of 59-82 % resembling the OS of our young cohort [33,34]. Another factor could be the young age of most of the donors, with a median of 29 years of age (Range: 15-63). Younger donors have also been associated with better outcomes in the Haplo-PTCy setting [35].

This study has several limitations. As mentioned, it is a single-center cohort with a relatively small number of highly selected patients, and it is not possible to compare directly with prior studies. Additionally, we could not compare it with other types of donors, namely MSD (low number of cases) or MUD (not available).

Conclusions

In conclusion, the experience of this center adds to the evidence that Haplo-PTCy is a safe and effective allogeneic transplant option, when following strict inclusion criteria. The results are comparable to the literature and stand out as the center is a public institution in a LMIC characterized by less investment and facilities in public health.

Author contribution

BP: Concept/design, Data collection, Data analysis/interpretation, Drafting article, Critical revision of article, Approval of article, Statistics; FB: Data collection, Critical revision of article, Approval of article, Approval of article, Approval of article, Critical revision of article, Approval of article, RB: Data analysis/interpretation, Drafting article, Critical revision of article, Approval of article, Statistics; AA: Concept/design, Critical revision of article, Approval of article; AM Concept/design, Critical revision of article, Approval of article; MEC: Data analysis/interpretation, Drafting article, Critical revision of article, Approval of article; MK: Concept/design, Data analysis/interpretation, Drafting article, Critical revision of article, Approval of article, Approval of article, Critical revision of article, Approval of article

Conflicts of interest

The authors declare no conflicts of interest.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.htct.2025.103982.

REFERENCES

1. Lang, P., Greil, J., Bader, P., Handgretinger, R., Klingebiel, T., Schumm, M., et al. Long-term outcome after haploidentical

- stem cell transplantation in children. Blood cells Mol Dis, 33(3), 281–287. https://doi.org/10.1016/j.bcmd.2004.08.017.
- 2. Palma, J., Salas, L., Carrión, F., Sotomayor, C., Catalán, P., et al. Haploidentical stem cell transplantation for children with high-risk leukemia. *Pediatr Blood Cancer*, 59(5), 895–901. https://doi.org/10.1002/pbc.24022.
- 3. Luznik, L., Jalla, S., Engstrom, L.W., Iannone, R., & Fuchs, E.J. Durable engraftment of major histocompatibility complex-incompatible cells after nonmyeloablative conditioning with fludarabine, low-dose total body irradiation, and posttransplantation cyclophosphamide. Blood, 98(12), 3456–3464. https://doi.org/10.1182/blood.v98.12.3456
- Meybodi, M.A., Cao, W., Luznik, L., Bashey, A., Zhang, X., et al. HLA-haploidentical vs matched-sibling hematopoietic cell transplantation: a systematic review and meta-analysis. Blood Adv, 3(17), 2581–2585. https://doi.org/10.1182/bloodadvan ces.2019000614
- Shem-Tov, N., Peczynski, C., Labopin, M., Itälä-Remes, M., Blaise, D., et al. Haploidentical vs. unrelated allogeneic stem cell transplantation for acute lymphoblastic leukemia in first complete remission: on behalf of the ALWP of the EBMT. Leukemia, 34(1), 283–292. https://doi.org/10.1038/s41375-019-0544-3
- Sanz, J., Galimard, J.E., Labopin, M., Afanasyev, B., Sergeevich, M.I., et al. Post-transplant cyclophosphamide containing regimens after matched sibling, matched unrelated and haploidentical donor transplants in patients with acute lymphoblastic leukemia in first complete remission, a comparative study of the ALWP of the EBMT. J Hematol Oncol, 14(1), 84. https://doi.org/10.1186/s13045-021-01094-2
- Nagler, A., Labopin, M., Houhou, M., Aljurf, M., Mousavi, A., et al. Outcome of haploidentical versus matched sibling donors in hematopoietic stem cell transplantation for adult patients with acute lymphoblastic leukemia: a study from the acute leukemia working party of the European society for blood and marrow transplantation. *J Hematol Oncol*, 14(1), 53. https://doi. org/10.1186/s13045-021-01065-7
- Correa, C., Gonzalez-Ramella, O., Baldomero, H., Basquiera, A.
 L., Baena, R., et al. Worldwide network for blood and marrow
 transplantation (WBMT) increasing access to hematopoietic
 cell transplantation in Latin America: results of the 2018
 LABMT activity survey and trends since 2012. Bone Marrow
 Transplant, 57(6), 881–888. https://doi.org/10.1038/s41409-02201630-9
- Passweg JR, Baldomero H, Chabannon C, Basak GW, de la Cámara R, et al. European society for blood and marrow transplantation (EBMT). Hematopoietic cell transplantation and cellular therapy survey of the EBMT: monitoring of activities and trends over 30 years. Bone Marrow Transplant. 2021;56 (7):1651–64. https://doi.org/10.1038/s41409-021-01227-8.
- Sarmiento M, Ramirez P, Jara V, Bertin P, Galleguillos M, et al. Haploidentical transplantation outcomes are comparable with those obtained with identical human leukocyte antigen allogeneic transplantation in Chilean patients with benign and malignant hemopathies. Hematol Transfus Cell Ther. 2020;42(1):40–5. https://doi.org/10.1016/j.htct.2019.01.010. Jan-Mar.
- 11. Rowlings PA, Przepiorka D, Klein JP, Gale RP, Passweg JR, Henslee-Downey PJ, Cahn JY, Calderwood S, Gratwohl A, Socié G, Abecasis MM, Sobocinski KA, Zhang MJ, Horowitz MM. IBMTR SEVERITY INDEx for grading acute graft-versus-host disease: retrospective comparison with Glucksberg grade. Br J Haematol. 1997;97(4):855–64. https://doi.org/10.1046/j.1365-2141.1997.1112925.x.
- Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA, et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation. 1974;18(4):295–304. https://doi.org/ 10.1097/00007890-197410000-00001.

- 13. Lee SJ. Classification systems for chronic graft-versus-host disease. Blood. 2017 5;129(1):30–7. https://doi.org/10.1182/blood-2016-07-686642.
- 14. Armand P, Gibson CJ, Cutler C, Ho VT, Koreth J, et al. A disease risk index for patients undergoing allogeneic stem cell transplantation. Blood. 2012;120(4):905–13. https://doi.org/10.1182/blood-2012-03-418202.
- Sorror ML, Maris MB, Storb R, Baron F, Sandmaier BM, Maloney DG, Storer B. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005;106(8):2912–9. https://doi.org/ 10.1182/blood-2005-05-2004.
- Scott BL, Pasquini MC, Logan BR, Wu J, Devine SM, Porter DL, et al. Myeloablative versus reduced-intensity hematopoietic cell transplantation for acute myeloid leukemia and myelodysplastic syndromes. J Clin Oncol. 2017;35(11):1154–61. https://doi.org/10.1200/JCO.2016.70.7091.
- 17. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014 10;124(2):188–95. https://doi.org/10.1182/blood-2014-05-552729.
- Spitzer TR. Engraftment syndrome following hematopoietic stem cell transplantation. Bone Marrow Transplant. 2001;27 (9):893–8. https://doi.org/10.1038/sj.bmt.1703015.
- 19. Kharfan-Dabaja MA, Kumar A, Ayala E, Aljurf M, Nishihori T, Marsh R, et al. Standardizing definitions of hematopoietic recovery, graft rejection, graft failure, poor graft function, and donor chimerism in allogeneic hematopoietic cell transplantation: a report on behalf of the American society for transplantation and cellular therapy. Transplant Cell Ther. 2021;27 (8):642–9. https://doi.org/10.1016/j.jtct.2021.04.007.
- 20. Swoboda R, Labopin M, Giebel S, Angelucci E, Arat M, Aljurf M, et al. Total body irradiation plus fludarabine versus thiotepa, busulfan plus fludarabine as a myeloablative conditioning for adults with acute lymphoblastic leukemia treated with haploidentical hematopoietic cell transplantation. A study by the acute leukemia working party of the EBMT. Bone Marrow Transplant. 2022;57(3):399–406. https://doi.org/10.1038/s41409-021-01550-0.
- 21. Nagler A, Rocha V, Labopin M, Unal A, Ben Othman T, Campos A, et al. Allogeneic hematopoietic stem-cell transplantation for acute myeloid leukemia in remission: comparison of intravenous busulfan plus cyclophosphamide (Cy) versus totalbody irradiation plus Cy as conditioning regimen—a report from the acute leukemia working party of the European group for blood and marrow transplantation. J Clin Oncol. 2013;31 (28):3549–56. https://doi.org/10.1200/JCO.2013.48.8114.
- 22. DeZern AE, Zahurak M, Symons H, Cooke K, Jones RJ, Brodsky RA. Alternative donor transplantation with high-dose post-transplantation cyclophosphamide for refractory severe aplastic anemia. Biol Blood Marrow Transplant. 2017;23 (3):498–504. https://doi.org/10.1016/j.bbmt.2016.12.628.
- 23. Kim H, Im HJ, Koh KN, Kang SH, Yoo JW, Choi ES, et al. Comparable outcome with a faster engraftment of optimized haploidentical hematopoietic stem cell transplantation compared with transplantations from other donor types in pediatric acquired aplastic anemia. Biol Blood Marrow Transplant. 2019;25(5):965–74. https://doi.org/10.1016/j.bbmt.2019.01.010.
- O'Donnell PV, Luznik L, Jones RJ, Vogelsang GB, Leffell MS, Phelps M, et al. Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2002;8(7):377–86. https://doi.org/10.1053/bbmt. 2002.v8.pm12171484.
- 25. Granata A, Fürst S, Bramanti S, Legrand F, Sarina B, Harbi S, et al. Peripheral blood stem cell for haploidentical transplantation with post-transplant high dose cyclophosphamide: detailed analysis of 181 consecutive patients. Bone Marrow

- Transplant. 2019;54(11):1730–7. https://doi.org/10.1038/s41409-019-0500-x.
- Bashey A, Zhang MJ, McCurdy SR, St Martin A, Argall T, Anasetti C, et al. Mobilized peripheral blood stem cells versus unstimulated bone marrow as a graft source for T-Cell-Replete haploidentical donor transplantation using post-transplant cyclophosphamide. J Clin Oncol. 2017;35(26):3002–9. https://doi.org/10.1200/JCO.2017.72.8428.
- 27. Sugita J, Kagaya Y, Miyamoto T, Shibasaki Y, Nagafuji K, Ota S, et al. Japan study group for cell therapy and transplantation (JSCT). Myeloablative and reduced-intensity conditioning in HLA-haploidentical peripheral blood stem cell transplantation using post-transplant cyclophosphamide. Bone Marrow Transplant. 2019;54(3):432–41. https://doi.org/10.1038/s41409-018-0279-1.
- 28. Sanz J, Galimard JE, Labopin M, Afanasyev B, Angelucci E, Ciceri F, et al. Acute leukemia working party of the European society for blood and marrow transplantation (EBMT). Post-transplant cyclophosphamide after matched sibling, unrelated and haploidentical donor transplants in patients with acute myeloid leukemia: a comparative study of the ALWP EBMT. J Hematol Oncol. 2020;13(1):46. https://doi.org/10.1186/s13045-020-00882-6.
- Im A, Rashidi A, Wang T, Hemmer M, MacMillan ML, Pidala J, et al. Risk factors for Graft-versus-Host disease in haploidentical hematopoietic cell transplantation using post-transplant cyclophosphamide. Biol Blood Marrow Transplant. 2020;26(8):1459–68. https://doi.org/10.1016/j.bbmt.2020.05.001. Epub 2020 May 17.
- 30. Bailén R, Pascual-Cascón MJ, Guerreiro M, López-Corral L, Chinea A, Bermúdez A, et al. Grupo Español de Trasplante Hematopoyético y Terapia Celular (GETH). Post-Transplantation Cyclophosphamide After HLA identical compared to haploidentical donor transplant in acute myeloid leukemia: a study on behalf of GETH-TC. Transplant Cell Ther. 2022;28(4). https://doi.org/10.1016/j.jtct.2022.01.020. 204.e1-204.e10.

- Parimon T, Au DH, Martin PJ, Chien JW. A risk score for mortality after allogeneic hematopoietic cell transplantation. Ann Intern Med. 2006;144(6):407–14. https://doi.org/10.7326/0003-4819-144-6-200603210-00007.
- 32. González-Vicent M, Molina B, Andión M, Sevilla J, Ramirez M, Pérez A, et al. Allogeneic hematopoietic transplantation using haploidentical donor vs. unrelated cord blood donor in pediatric patients: a single-center retrospective study. Eur J Haematol. 2011;87(1):46–53. https://doi.org/10.1111/j.1600-0609.2011.
- 33. Mo XD, Tang BL, Zhang XH, Zheng CC, Xu LP, Zhu XY, et al. Comparison of outcomes after umbilical cord blood and unmanipulated haploidentical hematopoietic stem cell transplantation in children with high-risk acute lymphoblastic leukemia. Int J Cancer. 2016;139(9):2106–15. https://doi.org/ 10.1002/ijc.30249.
- 34. Moreno C, Ramos-Elbal E, Velasco P, Aguilar Y, Gonzáález Martínez B, et al. Haploidentical vs. HLA-matched donor hematopoietic stem-cell transplantation for paediatric patients with acute lymphoblastic leukemia in second remission: A collaborative retrospective study of the Spanish group for bone marrow transplantation in children (GETMON/GETH) and the Spanish childhood relapsed ALL Board (ReALLNet). Front Pediatr. 2023;11:1140637. https://doi.org/10.3389/fped.2023. 1140637.
- 35. Nagler A, Labopin M, Swoboda R, et al. Young (<35 years) haploidentical versus old (≥35 years) mismatched unrelated donors and vice versa for allogeneic stem cell transplantation with post-transplant cyclophosphamide in patients with acute myeloid leukemia in first remission: a study on behalf of the acute leukemia working party of the European society for blood and marrow transplantation. Bone Marrow Transplant. 2024;59:1552–62. https://doi.org/10.1038/s41409-024-02400-5.

HEMATOLOGY, TRANSFUSION AND CELL THERAPY

www.htct.com.br

Original article

Experience with second allogeneic hematopoietic stem cell transplantation in Chilean patients: A single-center study

Yorman Flores, Javier Díaz, Patricio Rojas, José Salinas, Catherine Gutiérrez, Marcela Vidal, Verónica Jara, Elizabeth Rivera, María José García, Vicente Sandoval, Felipe Palacios, Maximiliano Vergara, Mauricio Ocqueteau, Mauricio Sarmiento *

Adult Hematopoietic Transplant Program, Red de Salud UC Christus, Pontificia Universidad Católica de Chile, Chile

ARTICLE INFO

Article history:
Received 3 December 2024
Accepted 8 June 2025
Available online 4 October 2025

Keywords: Leukemia Aplastic anemia Myelodysplastic syndromes Allogeneic stem cell transplantation

ABSTRACT

Introduction: Allogeneic hematopoietic stem cell transplantation is potentially a curative treatment for several hematological diseases. However, post-transplant relapse remains a significant challenge. For patients who achieve a second complete remission, a second allogeneic transplantation may be a promising therapeutic option. The aim of this study was to analyze clinical outcomes including graft-versus-host disease, non-relapse mortality, and relapse rates, as well as graft sources in patients who underwent a second allogeneic transplantation in a university-based transplant program.

Patients and Methods: A retrospective analysis of 21 adult patients who underwent a second allogeneic transplantation between 2001 and 2023 was performed. Data on demographics, underlying disease, graft source, conditioning, graft-versus-host disease, relapse, and survival were collected. Survival estimates were calculated using the Kaplan–Meier method. Results: The graft source was bone marrow in 60 % and peripheral blood in 40 % of cases. Grade III—IV acute graft-versus-host disease occurred in 5 % and extensive chronic graft-versus-host disease in 17 %. The non-relapse mortality was 69.2 %, and disease relapse occurred in 23.1 %. The one-year progression-free survival was 26.5 %, and overall survival was 42.3 %. Compared to those transplanted before 2010, patients who underwent transplantation after 2010 showed improved two-year PFS and OS, reaching 55 % and 45.4 %, respectively.

Conclusion: A second allogeneic transplantation may offer a survival benefit in selected patients with relapsed hematologic malignancies or bone marrow failure syndromes. Despite high non-relapse mortality, outcomes have improved in recent years with better salvage strategies.

© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

E-mail address: msarmiento@ucchristus.cl (M. Sarmiento). https://doi.org/10.1016/j.htct.2025.103980

2531-1379/© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^{*} Corresponding author at: Diagonal Paraguay 362, Santiago de Chile, Chile.

Introduction

Allogeneic hematopoietic stem cell transplantation (HSCT) is administered with curative intent in multiple hematologic disorders. However, a substantial proportion of patients relapse following this treatment. A second allogeneic transplantation (ALO2) is an option for a subgroup of patients who achieve remission after relapse, as demonstrated by leading transplant centers, predominantly in developed countries [1]. In Chile, the National Public Health Transplantation Program does not offer an ALO2 to patients who experience relapse after HSCT. Nevertheless, university and private centers provide ALO2 to fit patients who achieve a second remission.

Patients who relapse after an initial HSCT have a dismal prognosis and poor long-term survival [2,3]. Recent developments in salvage therapies have made it possible for selected patients to achieve remission and proceed to ALO2. In this context, the objective of this study was to analyze the outcomes of patients undergoing ALO2 in a Chilean university hospital, focusing on survival, complications, and treatment feasibility.

Methods

This was a retrospective, descriptive study conducted in patients aged 18 years or older who underwent a ALO2 between 2001 and 2023 at the Hematology Department of Red de Salud UC Christus, Pontificia Universidad Católica de Chile.

The primary outcomes were overall survival (OS) and progression-free survival (PFS), estimated using Kaplan–Meier methodology and the secondary outcomes were incidence of acute and chronic graft-versus-host disease (GvHD), non-relapse mortality (NRM), and relapse. GvHD was defined and graded per standard criteria.

Data on demographics, underlying hematologic disease, conditioning regimens, donor source, CD34⁺ cell dose, engraftment, complications, and cause of death were obtained from clinical records and the transplant program database.

The study protocol was approved by the institutional review board of the Pontificia Universidad Católica de Chile.

Results

A total of 1203 patients underwent HSCT at the center between 2001 and 2023. Of these, 602 (51 %) received an allogeneic transplant. Of this group, 21 patients underwent a ALO2 due to relapse or graft failure. The median age was 33.4 years (Range: 18–59 years), and 42 % were female.

The graft source was bone marrow in 60 % and peripheral blood in 40 % of cases. Human leukocyte antigen (HLA)-identical family donors were used in 55 %, haploidentical in 20 %, and unrelated donors in 25 %. The characteristics of the patients are summarized in Table 1.

Conditioning regimens varied by period. Between 2001 and 2010, regimens included busulfan/cyclophosphamide, total

Table 1 – Patient characteristics.	
Characteristic	
Gender -%	
Male	57.9
Female	42.1
Median Age (years) – median (range)	30
Hematologic Disorder - n (%)	
Acute Myeloid Leukemia	8 (38)
Acute Lymphoblastic Leukemia	5 (23)
Chronic Myeloid Leukemia	2 (8)
Hodgkin Lymphoma	3 (13)
Non-Hodgkin Lymphoma	1 (5)
Severe Aplastic Anemia	3 (13)
Donor Type - n	
HLA-Identical Family	11
Haploidentical	4
Unrelated	5
Stem Cell Source -%	
Bone Marrow	60
Peripheral Blood	40

body irradiation (TBI)/etoposide (Etoposide)/cyclophosphamide, and fludarabine/cyclophosphamide. From 2011 to 2023, regimens included fludarabine/cyclophosphamide/TBI, fludarabine/busulfan, fludarabine/treosulfan, and cyclophosphamide/ anti-thymocyte globulin (ATG).

GvHD prophylaxis used calcineurin inhibitors in all patients, methotrexate (Methotrexate) in 71 %, and post-transplant cyclophosphamide in 29 %. The mean CD34 $^+$ cell dose was 6.62×10^6 /kg bodyweight (95 % CI: 2.9-11.0). Median neutrophil and platelet engraftment times were 16 days (range: 8-35 days) and 17 days (range: 9-75 days), respectively.

Grade III—IV acute GvHD occurred in 5 %, and extensive chronic GvHD in 17 % of the cases. NRM was 69.2 %, while disease relapse accounted for 23.1 % of deaths. The median follow-up time was 13.5 months. Transplantation data are summarized in Table 2.

The one-year PFS and OS were 26.5 % and 42.3 %, respectively. When stratified by transplant period, patients transplanted between 2010 and 2023 had improved outcomes: one-year PFS was 55 %, and OS was 45.4 %. In contrast, for patients treated between 2001 and 2010, both one-year PFS and OS were 12.5 %, with median survival times of 51 and 52 days, respectively. Figs. 1-4 show the Kaplan Meier survival curves for PFS, OS, PFS by transplant decade and OS by transplant decade.

Discussion

This retrospective study contributes to the limited data available from Latin America on the outcomes of an ALO2. While ALO2 is a well-established salvage option in developed countries, its role in resource-constrained settings is less defined.

There is currently no standard of care for patients who relapse after an initial allogeneic transplant. Treatment strategies are often individualized, depending on multiple variables including patient comorbidities, disease characteristics, access to salvage therapies, donor availability, and functional

Table 2 – Transplantation Characteristics.	
Characteristic	
Conditioning Regimen (2001–2010) - n	
Busulfan, Cyclophosphamide	4
TBI 100 Gy, Etoposide Cyclophosphamide	3
Fludarabine, Cyclophosphamide	1
Conditioning Regimen (2011–2023) - n	
Flu-Cy-TBI (200–400 Gy)	4
Fludarabine, Busulfan	3
Flu-Treosulfan	2
Cyclophosphamide, ATG	3
GvHD Prophylaxis - n	
Calcineurin Inhibitors	21
Methotrexate	15
Post-Transplant Cyclophosphamide	6
CD34 $^+$ Cell Dose (× 10 6 /kg bodyweight) - median (range)	6.62 (2.9-11.6)
Granulocyte Engraftment (days) - median (range)	16 (8–35)
Platelet Engraftment (days) - median (range)	17 (9-75)
Acute GvHD Grade 3–4 -%	5
Extensive Chronic GvHD -%	17

Flu: fludarabine; ATG: anti-thymocyte globulin; Gy: grays, Cy: cyclophosphamide; TBI: total body irradiation; GvHD: graft-versus-host diseases.

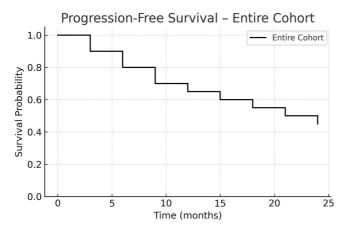


Figure 1-Progression-free survival in patients undergoing second allogeneic hematopoietic stem cell transplantation.

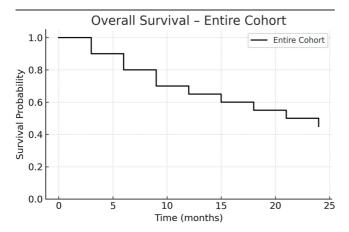


Figure 2 – Overall Survival in patients undergoing second allogeneic hematopoietic stem cell transplantation.

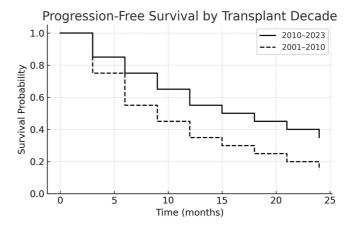


Figure 3 – Progression-free survival in patients undergoing second allogeneic hematopoietic stem cell transplantation according to the transplant decade.

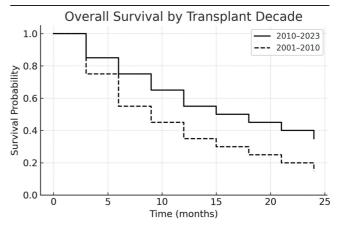


Figure 4–Overall Survival (OS) in patients undergoing second allogeneic hematopoietic stem cell transplantation according to the transplant decade.

status at relapse [4,5]. Options include donor lymphocyte infusions, immunosuppression withdrawal, targeted agents, chimeric antigen receptor (CAR)-T therapies, and repeat transplantation. A ALO2 remains one of the few potentially curative strategies in selected patients, particularly those who achieve a second remission.

Multiple retrospective studies have shown that ALO2 can lead to long-term survival in a minority of patients. The Société Française de Greffe de Moelle (SFGM) [6] reported a two-year disease-free survival (DFS) and OS of 35 % and 41 %, respectively in 150 patients, 61 % of whom had acute myeloid leukemia (AML). Similarly, a Center for International Blood & Marrow Transplant (CIBMTR) Research report [7] found a three-year OS of 27 % in AML patients who underwent ALO2. In a European Society for Blood and Marrow Transplantation (EBMT) analysis [8], the NRM rates at two and five years were 24 % and 26 %, respectively. More recently, ALO2 has been used in combination with CAR-T cell therapy [9,10] to consolidate remission after relapse, with promising results, especially in relapsed/refractory B-cell malignancies. However, such strategies remain largely inaccessible in Latin American countries due to financial and logistical constraints.

The findings of this study demonstrate that survival after ALO2 is possible even in resource-limited settings. The one-year OS in the present cohort was 42.3 %, and PFS was 26.5 %, which aligns with international data. Notably, patients treated after 2010 had significantly better outcomes, suggesting improvements in patient selection, salvage therapy efficacy, and transplant protocols. However, non-relapse mortality was high (69.2 %) with infections and GvHD being major contributors. Another Latin-American experience [11] reported a 66 % mortality rate in 12 patients who underwent ALO2, highlighting similar challenges in the region. These findings emphasize the need for real-world data and local treatment strategies tailored to regional limitations.

Despite the inherent limitations of retrospective design and small sample size, this study provides valuable insights into the feasibility and outcomes of ALO2 in Latin America. Future prospective studies and international collaborations are needed to better define best practices and improve accessibility to potentially curative treatments in developing countries.

Conflicts of interest

The author declares no conflicts of interest.

REFERENCES

- Zuanelli Brambilla C, Lobaugh SM, Ruiz JD, Dahi PB, Goldberg AD, Young JW, et al. Relapse after allogeneic stem cell transplantation of acute myelogenous leukemia and myelodysplastic syndrome and the importance of second cellular therapy. Transplant Cell Ther. 2021;27(9):771.
- Mauricio Sarmiento, Patricio Rojas, Nicolás Triantafilo, James Campbell, José García María, Mauricio Ocqueteau, et al. Resultados a largo plazo de una cohorte chilena: la edad del paciente no incide en el resultado del trasplante alogénico de precursores hematopoyéticos para leucemia mieloide aguda. Rev Méd Chile [Internet]. 2021;149(1):22–9. Ene [citado 2024 Feb 16].

- Oukalled NM, Kharfan-Dabaja MA. What is the role of a second allogeneic hematopoietic cell transplant in relapsed acute myeloid leukemia? Bone Marrow Transplant. 2020;55(2):325–31. https://doi.org/10.1038/s41409-019-0584-3. FebEpub 2019 Jun 3. PMID: 31160807.
- Yerushalmi Y, Shem-Tov N, Danylesko I, Canaani J, Avigdor A, Yerushalmi R, et al. Second hematopoietic stem cell transplantation as salvage therapy for relapsed acute myeloid leukemia/myelodysplastic syndromes after a first transplantation. Hematological. 2023;108(7):1782–92. Jul 1.
- 5. Yalniz FF, Saliba RM, Greenbaum U, Ramdial J, Popat U, Oran B, et al. Outcomes of second allogeneic hematopoietic cell transplantation for patients with acute myeloid leukemia. Transplant Cell Ther. 2021;27(8):689–95.
- 6. Michallet M, Tanguy ML, Socié G, Thiébaut A, Belhabri A, Milpied N, et al. Second allogeneic hematopoietic stem cell transplantation in relapsed acute and chronic leukemias for patients who underwent a first allogeneic bone marrow transplantation: a survey of the Société Française de Greffe de Moelle (SFGM). Br J Haematol. 2000;108:400–7.
- 7. Ruutu T, de Wreede LC, van Biezen A, Brand R, Mohty M, Dreger P, et al. Second allogeneic transplantation for relapse of malignant disease: retrospective analysis of outcome and predictive factors by the EBMT. Bone Marrow Transpl. 2015;50:1542–50.
- 8. Nagler A, Labopin M, Dholaria B, Finke J, Brecht A, Schanz U, et al. Second allogeneic stem cell transplantation in patients with acute lymphoblastic leukemia: a study on behalf of the acute leukemia working party of the european society for blood and marrow transplantation. Br J Haematol. 2019;186 (5):767–76. Sep.
- Cao XY, Zhang JP, Zhao YL, Xiong M, Zhou JR, Lu Y, et al. Analysis of benefits of a second Allo-HSCT after CAR-T cell therapy in patients with relapsed/refractory B-cell acute lymphoblastic leukemia who relapsed after transplant. Front Immunol. 2023;14:1191382. Jul 4.
- Kharfan-Dabaja MA, Labopin M, Polge E, Nishihori T, Bazarbachi A, Finke J, et al. Association of second allogeneic hematopoietic cell transplant vs donor lymphocyte infusion with overall survival in patients with acute myeloid leukemia relapse. JAMA Oncol. 2018;4:1245–53.
- 11. Jaime-Pérez JC, Picón-Galindo E, Herrera-Garza JL, Gómez-Almaguer D. Outcomes of second hematopoietic stem cell transplantation using reduced-intensity conditioning in an outpatient setting. Hematol Oncol. 2021;39(1):87–96. https://doi.org/10.1002/hon.2812. FebEpub 2020 Oct 3. PMID: 32978807.

HEMATOLOGY, TRANSFUSION AND CELL THERAPY

www.htct.com.br

Original article

Coagulation factor stability and sterility of thawed fresh frozen plasma stored at 2-6 ° C for five days: Towards optimizing utilization

Ruchika Bhartia, Paramjit Kaur ** , Kshitija Mittal, Anita Tahlan, Varsha Gupta, Ravneet Kaur ** , Gagandeep Kaur

Government Medical College and Hospital, Chandigarh, India

ARTICLE INFO

Article history: Received 1 April 2024 Accepted 28 July 2025 Available online 8 October 2025

https://doi.org/10.1016/j.htct.2025.103988

Keywords: Fresh Frozen Plasma Thawed plasma Blood coagulation factor

ABSTRACT

Background: Fresh frozen plasma plays a crucial role in managing trauma and bleeding patients. The concern about a decline in labile coagulation factors limits its usage beyond 24 hours. This study aimed to analyze coagulation factor levels and microbial contamination of thawed fresh frozen plasma stored at 2-6 °C for five days.

Material and methods: A prospective observational study was conducted on 40 male donors with blood groups A and O selected through purposive sampling. Blood was collected in 450 mL bags and freshly prepared plasma was aliquoted and frozen at -80 °C. Aliquots were thawed at 37 °C and tested on Days 0, 1, and 5 after storage at 2-6 °C. Coagulation screening assays and activity of coagulation factors V, VIII, IX, fibrinogen, and von Willebrand factor were performed. Samples were tested for sterility on Day 5.

Results: One-way ANOVA revealed a significant increase in mean prothrombin time, activated partial thromboplastin time, and international normalized ratio during storage (p-value < 0.001). The activity of factors V and VIII showed a significant decrease over five days (factor V - 20.0 % and factor VIII - 42.2 %; p-value < 0.001), with factor VIII activity declining by 30.8 % within the first 24 hours and remaining relatively stable thereafter. Mean von Willebrand factor activity was lower in fresh frozen plasma from O blood group donors (p-value < 0.05) on Days 1 and 5 of storage using an unpaired t-test. Cultures were sterile on Day 5.

Conclusion: Key coagulation factors were well preserved in thawed plasma till five days of storage at 2-6 $^{\circ}$ C without compromising product sterility suggesting potential for extended shelf life.

© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

^{*} Corresponding author at: Department of Transfusion Medicine, Government Medical College and Hospital, Chandigarh, India.

E-mail address: paramjit.gp71@yahoo.com (P. Kaur).

Fresh frozen plasma (FFP) is a rich source of coagulation factors. It is currently indicated for transfusion in conditions of impaired hemostasis resulting from multiple

coagulation factor deficiencies such as liver diseases, disseminated intravascular coagulation, major trauma, and as a replacement fluid during therapeutic plasma exchange [1,2]. FFP should be thawed at 30-37 °C in a plasma thawing bath before transfusion. As per the Indian National Regulatory Authority, FFP should be used within 24 hours of thawing [3]. If not utilized within 24 hours, FFP is discarded due to concerns about a decline in coagulation factor activity and microbial contamination. This leads to the wastage of this precious resource.

The shelf life of thawed FFP is a topic of interest. The recommendations pertaining to the maximum permitted storage time post-thawing vary in different countries. The Association for the Advancement of Blood and Biotherapies (AABB) introduced the concept of thawed plasma (TP) to maintain inventory and reduce plasma wastage. TP is plasma stored at 1-6 °C for an additional four days after the 24 hours period [4]. The British Society of Hematology states that once thawed, FFP may be stored at 2-6 °C for up to 24 hours [5]. In Australia, TP is known as Extended Life Plasma (ELP) and has a shelf life of up to five days at 2-6 °C from the day of thawing. TP and ELP are similar to FFP but have lower levels of labile coagulation factors [6-9]. In developing countries like Malaysia, FFP is discarded if unused within six hours of thawing [10].

In severe trauma-induced bleeding, precious lives can be saved by rapid replacement of coagulation factors with the administration of plasma. Availability of pre-thawed FFP in trauma centers will be a great asset to clinicians for immediate resuscitation of these patients. Therefore, the present study aimed to determine the levels of labile and stable coagulation factors and to check for bacterial contamination of thawed plasma during storage at 2-6 °C for five days. Utilization of FFP beyond 24 hours of thawing may help in timely availability and prevent potential wastage of unused thawed FFP.

Materials and methods

Study design

This prospective cross-sectional study was conducted in the Department of Transfusion Medicine of a tertiary care hospital. This study was conducted on 40 healthy male donors over 12 months after approval from the Institutional Ethics Committee and informed written consent from blood donors. All whole blood donors were screened as per the Indian National Regulatory Authority [3]. Blood donors meeting the eligibility criteria and weighing more than 55 kg were included in the study using a purposive sampling method. Only male donors were included as female donors usually do not meet the minimum weight eligibility criteria of 55 kg for the collection of 450 mL blood. Exclusion criteria were donors where blood was not collected using a single clean venipuncture, collection time of more than eight minutes, technical errors, under or over-collected bags, and donors reactive for any transfusion-transmitted infections. The donors were further divided into one of two groups:

Group 1 (n = 20): donors of the O Rh D positive blood group and Group 2 (n = 20) donors of the A Rh D positive blood group.

Blood collection and processing

After obtaining informed consent, whole blood was collected in 450 mL triple blood bags with Citrate Phosphate Dextrose Adenine Solution (CPDA-1) as an anticoagulant (Terumo Penpol, Thiruvananthapuram, India). Whole blood was collected within eight minutes using a single clean venipuncture. Packed red blood cells (PRBCs), FFP, and platelet concentrates (PCs) were prepared within six hours of blood collection according to the departmental standard operating procedure using the same cryofuge by a dedicated trained laboratory technologist. Plasma was rapidly frozen at -80 °C in a mechanical deep freezer (Terumo Penpol, Thiruvananthapuram, India) immediately after preparation. Once frozen, FFP was subsequently stored below -30 °C in a deep freezer (Terumo Penpol, Thiruvananthapuram, India).

FFP units were thawed in a plasma thawing bath (Helmer Scientific, Indiana, USA) at 37 °C for 30 minutes within three months of freezing. After thawing, 50 mL aliquots were prepared in a transfer bag using a sterile connecting device (TSCD-II, Terumo Penpol, Thiruvananthapuram, India), and a baseline 10 mL sample was taken in a plain tube after proper mixing of contents. The aliquot was stored at 2-6 °C and sampled again at 24 hours and five days for coagulation factor analysis. The rest of the unit was stored at 2-6 °C for issue to patients within 24 hours.

Laboratory analysis

Coagulation screening assays, including Prothrombin time (PT), Activated Partial thromboplastin time (APTT), Prothrombin index (PTI), and International normalized ratio (INR), were analyzed on Days 0, 1, and 5 using a fully automated coagulation analyzer (ACL Top TM 500 CTS, Instrumentation Laboratory, Bedford, MA, USA) as per the manufacturer's instructions. Factor V (FV), factor VIII (FVIII), factor IX (FIX), fibrinogen and von Willebrand factor (vWF) levels were also measured using the same analyzer as per the manufacturer's instructions. The thawed FFP samples were also sent for sterility testing on Day 5.

Statistical analysis

The sample size was estimated based on the mean difference of FVIII activity in thawed FFP based on a previous study [10]. For possible attrition, it was decided to include at least 30 subjects. The following formula was used for sample size calculation $n = (Z\alpha/2 + Z\beta)2^*2^*\sigma^2/d2$ where $Z\alpha/2$ is the critical value of the normal distribution at $\alpha/2$ (e.g. for a 95 % confidence level, α is 0.05 and the critical value is 1.96), $Z\beta$ is the critical value of the normal distribution at β (e.g. for a power of 95 %, β is 0.05 and the critical value is 1.64), σ^2 is the population variance, and d is the difference between means.

All data was compiled using Google Sheets and data analysis was done using IBM SPSS statistics software. For quantitative variables, data were analyzed either as the mean and

standard deviation or as the median and interquartile range. The distribution of the variables was tested with the chisquare test. Student t-test was applied to compare two groups and the ANOVA test was applied to compare three groups for normally distributed data. Categorical variables were reported as counts and percentages. Discrete (categorical) groups were compared by the chi-square (χ^2) test. The ANOVA test was applied for time-related variables of scores/skewed data; the paired t-test was carried out for normally distributed data. Comparisons of categorical data were made using the Pearson chi-square test. All the statistical tests were two-sided and were performed at a significance level of $\alpha=0.05$, thus a p-value < 0.05 was considered significant.

Results

The mean age of the study population was 34.3 ± 9.3 years with a range of 19-60 years. The mean time taken to collect 450 mL of whole blood from all the study subjects was 6.2 ± 0.83 minutes (range: 5-8 minutes). The mean time between whole blood collection and component preparation was 3.7 ± 0.88 hours (range: 2-5 hours). The mean time between the day of collection and thawing was 73.3 ± 19.6 days (range: 35-103 days).

Conventional coagulation tests of thawed fresh frozen plasma

Table 1 shows the changes over five days of storage at 2-6 °C in the values of conventional coagulation tests of thawed FFP. The baseline PT ranged between 10.2 s and 14.1 s while the APTT ranged between 26.1 s and 37.2 s. According to one-way ANOVA, the mean increases in PT and APTT values were statistically significant over five days of storage (p-value < 0.001). The increases in mean PT of thawed FFP stored at 2-6 °C were statistically significant from Day 0 to Day 1 (p-value = 0.004), Day 0 to Day 5 (p-value < 0.001), and Day 1 to Day 5 (p-value < 0.001) using an unpaired t-test. The changes in mean APTT from Day 0 to Day 1 (p-value < 0.001), Day 0 to Day 5 (p-value < 0.001), and Day 1 to Day 5 (p-value < 0.001), and Day 1 to Day 5 (p-value < 0.005) were also statistically significant using an unpaired t-test.

Coagulation factors in thawed fresh frozen plasma

The activities of FV, FVIII, FIX, and vWF, and fibrinogen levels in thawed FFP over five days of storage at 2-6 $^{\circ}$ C are shown in Table 2. The baseline FV activity ranged between 73.5 $^{\circ}$ and 137.5 $^{\circ}$, and FVIII activity ranged between 43 $^{\circ}$ and 184.8 $^{\circ}$.

The coagulation FV and FVIII activities in thawed FFP showed significant declines during storage at 2-6 °C over five days using the one-way ANOVA test (p-value < 0.001; Table 2). The decline in FVIII activity from Day 0 to Day 5 was 42.2 % with a major decline (30.8 %) in activity being observed in the first 24 hours. Out of 40 donors, 55 % (n = 22) had FVIII activity greater than 50 % while in 20 % (n = 8) of donors the activity was more than 70 % on Day 5. The FIX activity, vWF activity and fibrinogen levels remained stable over the five-day storage period of thawed FFP at 2-6 °C. The mean activities of all the factors studied were well within the reference ranges on Day 5 of storage at 2-6 °C.

Donor blood group and coagulation parameters in thawed fresh frozen plasma

The mean FVIII activity was lower in FFP from donors of the O blood group as compared to A blood group donors on all three days; however, the difference was statistically insignificant. Mean FIX activity was significantly lower in FFP from O blood group donors on Day 5 of storage (p-value: 0.029). Mean vWF activity was also lower in FFP from O blood group donors with the difference being significant on Days 1 (p-value = 0.014) and 5 of storage (p-value = 0.019). The mean fibrinogen levels were significantly higher in FFP prepared from O blood group donors on Day 1 of storage (p-value: < 0.001; Table 3).

Culture of thawed fresh frozen plasma

All thawed FFP samples were sent for culture on Day 5 of storage. The cultures were sterile after 72 hours of incubation.

Discussion

Trauma accounts for nearly 20 % of mortality in India, with a high impact on the younger population [11]. FFP is crucial for managing trauma-related coagulopathy, and pre-thawed liquid plasma could aid early resuscitation. However, guidelines for using thawed FFP beyond 24 hours at 2-6 °C are lacking in developing nations. Coagulation factors and sterility in thawed FFP from O and A Rh D-positive donors stored at 2-6 °C for five days were compared due to potential ABO influence on vWF and FVIII [8,12,13]. To ensure uniformity, FFPs were thawed within three months of storage.

In this study, the mean PT, PTI, APTT, and INR of thawed FFP increased significantly during storage likely due to coagulation factor deterioration at 2-6 °C. Nevertheless, all values

Table 1 – Conventional coagulation tests of thawed fresh frozen plasma over five days of storage at 2-6 °C.					
Parameter	Normal Range	Day 0 (Mean \pm SD)	Day 1 (Mean \pm SD)	Day 5 (Mean \pm SD)	p-value ANOVA
Prothrombin Time (s) PTI (%) APTT (s) International Normalized Ratio	9.4-12.5 96-100 25.1-36.5 0.9-1.1	11.3 ± 0.9 107.0 ± 11.0 30.9 ± 2.7 0.94 ± 0.1	11.9 ± 0.9 98.7 ± 10.1 33.1 ± 3.1 0.99 ± 0.1	13.0 ± 1.2 87.3 ± 10.6 34.6 ± 3.2 1.1 ± 0.1	<0.001 <0.001 <0.001 <0.001

PTI: prothrombin time index; APTT: activated partial thromboplastin time; SD: Standard Deviation. Note: Bold p-values indicate statistically significant results.

Parameter	Normal range	Day 0 (Mean \pm SD)	Day 1 (Mean \pm SD)	Day 5 (Mean ± SD)	p-value*	Reduction percentage on Day 1	Reduction percentage on Day 5
Factor V activity (%)	62-139	98.7 ± 16.6	93.1 ± 23.3	78.7 ± 17.4	<0.001	5.6	20.0
Factor VIII activity (%)	50-150	97.7 ± 30.4	66.9 ± 24.1	55.5 ± 19.1	<0.001	30.8	42.2
Factor IX activity (%)	65-150	117.1 ± 18.6	109.6 ± 22.5	111.5 ± 20.2	0.248	7.5	5.6
Fibrinogen (mg/dl)	238-498	257.0 ± 54.8	272.3 ± 79.3	$\textbf{317.4} \pm \textbf{53.4}$	< 0.001	-	-
von Willebrand Factor (%)	Blood group O: 41.1-125.9 Blood group A: 61.3-157.8	112.5 ± 40.5	111.2 ± 37.2	102.6 ± 35.5	0.456	1.3	9.9

^{*}Using one-way ANOVA test

Note: Bold p-values indicate statistically significant results.

remained within the normal reference range over five days. A study observed a significant increase in mean PT from 11.3 \pm 0.83 s on Day 0 to 13.3 \pm 1.10 s on Day 5 in thawed FFP stored at 2-6 °C [14]. Another study also showed 23 % increase in mean PT and APTT values from Day 0 to Day 5 of storage [15]. Authors have reported an increase in mean INR in thawed FFP from 0.95 \pm 0.05 on Day 0 to 1.20 \pm 0.21 on Day 5 of storage [8].

FV, a labile pro-coagulant factor with 40 % homology to FVIII, showed a 20 % activity loss during storage at 2-6 °C. However, the mean FV activity (78.7 \pm 17.4 %) on Day 5 remained within the reference range and met the quality

control criteria of 70 %, making it suitable for use in isolated FV deficiency. One study reported a decline (114.1 \pm 38.7 % on Day 0 to 70.6 \pm 18.9 % on Day 5) in mean FV activity in thawed FFP stored over five days at 1-6 °C [8].

FVIII activity declines during prolonged plasma storage at 2-6 °C and its measurement is a quality control requirement. In the present study, FVIII activity decreased by 43 % over five days, with a major drop (30.8 %) in the first 24 hours, with stabilization thereafter. This suggests that extending thawed FFP storage to five days does not adversely affect FVIII levels. Studies report a 36-60 % decline in mean FVIII activity by Day 5 in thawed FFP stored at 2-6 °C [15]. In this study, FVIII

	and coagulation parameters of thaw	<u> </u>	
Days of storage	Blood group 'O'	Blood group 'A'	p-value**
Factor V (%)			
Day 0	100.4 ± 18.2	96.9 ± 15.1	0.518
Day 1	96.1 ± 26.5	89.9 ± 19.5	0.413
Day 5	77.6 ± 17.9	79.9 ± 17.3	0.685
p-value*	0.003	0.014	
Factor VIII (%)			
Day 0	90.3 ± 32.2	105.4 ± 27.1	0.123
Day 1	61.7 ± 25.3	72.5 ± 22.1	0.165
Day 5	50.6 ± 16.3	60.7 ± 20.6	0.097
p-value*	<0.001	<0.001	
Factor IX (%)			
Day 0	112.5 ± 17.2	122.1 ± 19.3	0.109
Day 1	106.5 ± 22.3	112.8 ± 22.8	0.389
Day 5	104.7 ± 19.5	118.6 ± 18.9	0.029
p-value*	0.432	0.372	
Fibrinogen (mg/dL)			
Day 0	259.1 ± 47.2	254.9 ± 63.1	0.815
Day 1	375.3 ± 73.9	269.1 ± 86.4	< 0.001
Day 5	321.3 ± 43.9	313.4 ± 62.8	0.650
p-value*	<0.001	0.006	
von Willebrand factor (%)			
Day 0	100.7 ± 35.6	125.1 ± 42.4	0.058
Day 1	97.3 ± 34.8	125.9 ± 34.7	0.014
Day 5	89.9 ± 34.5	116.0 ± 32.2	0.019
p-value*	0.610	0.655	

^{*} Using one-way ANOVA test; ** Using unpaired t-test; Note: Bold p-values indicate statistically significant results.

SD: Standard Deviation

activity remained within the normal reference range up to five days of refrigerated storage, sufficient for achieving clinical hemostasis. Mean baseline FVIII activity was lower in group O donors, consistent with existing literature [12].

FIX showed a non-significant decrease in activity in thawed FFP throughout the storage period as seen in previous reports [8,14]. A significantly lower mean FIX activity was observed in FFP from group O donors on Day 5 of storage. A recent study from India also reported significantly lower FIX levels in O group donors as compared to non-O group donors [16].

Fibrinogen is a key protein involved in clot formation [17]. The current study found no significant decline in fibrinogen levels in thawed FFP over five days of refrigerated storage, consistent with previous reports [8,10,14,18]. This supports its use in hypofibrinogenemia, particularly in resource-limited settings. Fibrinogen levels in cryoprecipitate were higher in O group donors than A group donors on Day 1, challenging the notion that O group donors are unsuitable for cryoprecipitate due to lower FVIII and vWF levels. Given the high prevalence of the O group in India, further research is needed to explore its potential in cryoprecipitate production. vWF is a multifunctional protein and an acute-phase reactant [17]. In this study, vWF activity in thawed FFP remained stable during storage, whereas another study reported a decline from 110.8 ± 39.01 % at baseline to 67.0 ± 35.5 % on Day 5 [14]. A significantly lower vWF activity was found in O group donors on both Day 1 and Day 5, consistent with reports that vWF levels are 25 % lower in O group plasma due to the effect of ABO(H) carbohydrate structures on its glycans [19].

In the normal population, clotting factor levels range from 50-150 %, with hemostasis requiring much lower levels [7]. In this study, baseline coagulation factor activity remained above 70 %. Plasma is rarely contaminated due to frozen storage, but thawing in a water bath poses a risk. All samples remained sterile after 72 hours of incubation, supporting the safe storage of FFP for five days at 2-6 °C. Similarly, another study found no bacterial growth in culture samples collected on Day 5 and tested on Day 7 [20].

The present study had a few limitations. Firstly, it was a single-center study with a small sample size, which may limit the generalizability of the findings. The exclusion of female donors, primarily due to weight requirements, could have introduced gender-related bias by overlooking physiological differences. Larger, multi-center studies are needed to validate these results and assess clinical implications. Despite these limitations, the findings provide valuable insights for managing coagulopathies with FFP transfusions. Future research should explore the impact of extended storage on additional factors and assess potential cost-effectiveness.

Conclusion

This study demonstrates that extending the storage duration of thawed FFP to five days at 2-6 $^{\circ}$ C is feasible while maintaining clinically effective levels of key coagulation factors and product sterility. This signifies the potential of pre-thawed FFP in improving patient care by facilitating faster resuscitation in trauma situations and reducing plasma wastage.

Ethics approval statement

The study was approved by the institutional ethics committee and informed written consent was obtained from all participants.

Funding information

None.

Author contributions

RB: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing — original draft; PK: Conceptualization, Formal analysis, Methodology, Resources, Supervision, Validation, Writing — review & editing; KM: Formal analysis, Methodology, Supervision, Validation, Writing — review & editing; AT: Formal analysis, Methodology, Supervision, Validation; VG: Methodology, Supervision, Validation; RK: Methodology, Resources, Supervision, Writing — review & editing; GK: Methodology, Visualization, Writing — review & editing.

Data availability

The data pertaining to the study is available from the first author and corresponding author upon reasonable request.

Conflicts of interest

The manuscript has been seen and approved by all authors, it is not under active consideration for publication, has not been accepted for publication, nor has it been published, in full or in part.

REFERENCES

- 1. Cardigan R, Van der Meer PF, Pergande C, Cookson P, Baumann-Baretti B, Cancelas JA, et al. Coagulation factor content of plasma produced from whole blood stored for 24 hours at ambient temperature: results from an international multicenter BEST Collaborative study. Transfusion. 2011;51:50S-7S.
- 2. Iqbal H. A clinical audit of fresh frozen plasma usage. J Rawalpindi Med Coll. 2013;17:122–4.
- Central Drugs Standard Control Organisation. Drugs and Cosmetics act, 1940 and Amendments March 2020 [cited 2024, Feb 26]. Available from https://cdsco.gov.in/opencms/opencms/system/modules/CDSCO.WEB/elements/download_file_division.jsp?num_id=NTc2MQ==.
- Eder AF, Sebok MA. Plasma components: FFP, FP24, and thawed plasma. Immunohematology. 2007;23:150–7.
- European Directorate for the Quality of Medicines and Healthcare. Guide to the preparation, use and quality assurance of blood components. Strasbourg, France: Council of Europe; 2020.

- Extended Life Plasma: A framework for preparation, storage and use. Australian and New Zealand Society of Blood Transfusion. Sydney: Australian & New Zealand Society of Blood Transfusion Ltd; 2013. p. 8–20.
- Tholpady A, Monson J, Radovancevic R, Klein K, Bracey A. Analysis of prolonged storage on coagulation Factor (F)V, FVII, and FVIII in thawed plasma: is it time to extend the expiration date beyond 5 days? Transfusion. 2013;53:645–50.
- Wang Z, Du X, Li C, Ma L, Sun P, Cao H, et al. Coagulation factors and inhibitors in thawed plasma stored at 1–6°C for 5days in China. Transfus Apher Sci. 2014;50:274–80.
- 9. Von Heymann C, Keller MK, Spies C, Schuster M, Meinck K, Sander M, et al. Activity of clotting factors in fresh-frozen plasma during storage at 4 degrees C over 6 days. Transfusion. 2009;49:913–20.
- Shamsudin S, Yousuf R, Tang YL, Ding CH, Leong CF. Evaluation of coagulation factor activity and sterility of thawed fresh frozen plasma during storage up to 5 days at 4°C. Malays J Pathol. 2020;42:59–64.
- Amato S, Bonnell L, Mohan M, Roy N, Malhotra A. Comparing trauma mortality of injured patients in India and the USA: a risk-adjusted analysis. Trauma Surg Acute Care Open. 2021;6: e000719.
- O'donnell J, Laffan MA. The relationship between ABO histo blood group, factor VIII and von Willebrand factor. Transfus Med. 2001;11:343–51.

- Downes KA, Wilson E, Yomtovian R, Sarode R. Serial measurement of clotting factors in thawed plasma stored for 5 days. Transfusion. 2001;41:570.
- 14. Noordin SS, Karim FA, Mohammad WMZ bin W, Hussein AR. Coagulation factor activities changes over 5 days in thawed fresh frozen plasma stored at different initial storage temperatures. Indian J Hematol Blood Transfus. 2018;34:510–6.
- 15. Khan S, Hameed A, Bashir S, Aftab I, Khan FS, Mustafa G. Stability of FV, FVII and FVIII in Post-Thaw Plasma Units During Refrigerated Storage For 5 Days. Isra Med J. 2018;10:96–101.
- Agarwal S, Negi G, Meinia SK, Chennamsetty EP, Kaur D, Jain A. Association of donor characteristics with coagulation factor levels in fresh frozen plasma. Asian J TransfusSci. 2023;17:217–20.
- 17. Brummel-Ziedins KE, Orfeo T, Everse SJ, Mann KG. Blood coagulation and fibrinolysis. In: Greer JP, Arber DA, Glader B, List AF, Means RT, Paraskevas F, Rodgers GM, eds. Wintrobe's clinical hematology, 13th ed, Wolters Kluwer; 2013:428–98.
- 18. Sheffield WP, Bhakta V, Yi Q-L, Jenkins C. Stability of thawed apheresis fresh-frozen plasma stored for up to 120 hours at 1° C to 6°C. J Blood Transfus. 2016;2016:6260792.
- 19. Ward SE, O'Sullivan JM, O'Donnell JS. The relationship between ABO blood group, von Willebrand factor, and primary hemostasis. Blood. 2020;17(136):2864–74.
- 20. Sidhu RS, Le T, Brimhall B, Thompson H. Study of coagulation factor activity in apheresed thawed fresh frozen plasma at 1 -6°C for five days. J Clin Apher. 2006;21:224-6.

www.htct.com.br

Original article

Correlation of serum interleukin-8 with disease severity in aplastic anemia

Shahla'a Fadhil Sabir 🗅 *, Huda Ibraheem Abd AL-Lateef, Naam Ali Hamza

Mustansiriyah University, The National Center of Hematology, Baghdad, Iraq

ARTICLE INFO

Article history:
Received 7 July 2024
Accepted 21 July 2025
Available online 8 October 2025

Keywords:
Aplastic anemia
Severity of disease
Chemokine
Interleukin-8

ABSTRACT

Background: Aplastic anemia is a heterogeneous group of hematological disorders identified by the presence of one or more cytopenias in the bone marrow or the peripheral blood or both, affecting either one or multiple blood cell lineages. The pathophysiology of this disorder is unclear; however, the prevailing hypothesis posits that an aberrant immune response is responsible for the death of hematopoietic precursor stem cells due to autoreactive cytotoxic T lymphocytes in individuals with a genetic predisposition. Interleukin-8 acts as a pleiotropic prototype chemokine and serves as a powerful inhibitor of myelopoiesis and assumes an essential role in both the initiation and progression of acute inflammation and tissue damage. Consequently, it is postulated that the sustained elevation in interleukin-8 production could potentially lead to immune-mediated bone marrow failure in aplastic anemia. The aim of this study was to evaluate the serum interleukin-8 concentrations in individuals with aplastic anemia as well as investigate its potential connection with disease severity.

Methods: This study was performed at the National Center of Hematology and included 28 aplastic anemia patients and 30 healthy individuals matched by age and gender as a control group. The serum interleukin-8 levels were measured by the quantitative sandwich enzyme-linked immunosorbent assay (ELISA) method.

Results: Considerrable elevation in serum interleukin-8 levels were observed between the two groups (p-value = 0.405). Of the aplastic anemia patients, severe cases had significantly higher levels of interleukin-8 compared to non-severe patients (p-value = 0.0495), with a cutoff serum level of 7.71 pg/mL.

Conclusion: Interleukin-8 may have a role in the immune-mediated pathophysiology of aplastic anemia as well as have a significant correlation with disease severity.

© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Idiopathic acquired aplastic anemia (AA), an uncommon and potentially fatal bone marrow failure, is identified by hypocellular bone marrow and peripheral blood cytopenias [1]. Its

^{*} Corresponding author. E-mail address: shahlaa.fadhil@uomustansiriyah.edu.iq (S.F. Sabir).

effects may range in severity from mild to severe cytopenia [2]. AA is classified into three clinical and hematological categories, which are determined by evaluating the cellularity of the bone marrow (BM), platelet count, absolute neutrophil count (ANC), and reticulocyte count [3]. AA is a disease based on an immune meditated pathway in which the dysfunctional effector cells recognize and destroy the marrow progenitor cells, resulting in pancytopenia [4,5]. The immunopathology theory of AA is supported by the positive response to immunosuppressive therapy with the administration of anti-thymocyte globulin and cyclosporine [5]. A variety of growth factors and cytokines, specifically chemokines, synthesized by stem cells, regulatory cells, and marrow stromal cells, play vital roles in the BM microenvironment. These components exert regulatory control over hematopoiesis through autocrine and paracrine mechanisms [6,7]. Interleukin-8 (IL-8), a pleiotropic prototype CXC chemokine, is produced by different cell types, primarily by macrophages and fibroblasts in the BM, and neutrophils and T-cells in the peripheral blood [8,9]. Via a receptor-ligand mediated mechanism, IL-8 may contribute to the suppression of hematopoiesis, a process by which the blood cells are originated [8]. It serves as a powerful inhibitor of myelopoiesis and assumes an essential role in both the initiation and progression of acute inflammation and tissue damage [10,11]. Research conducted on the pathophysiology of the disease has predominantly centered on stem cell abnormalities and immunological pathways, while, limited data exists regarding the involvement of the BM microenvironment in this condition [1]. Consequently, it is postulated that the sustained elevation in IL-8 production could potentially play a role in the onset of immune-mediated BM failure in individuals with AA [11]. Furthermore, evidence shows that IL-8 correlates with disease severity and progression [12]. This study evaluates the serum IL-8 concentrations in individuals with AA as well as investigates potential connections with disease severity.

Patients and methods

The present study was carried out from December 2020 to December 2022 at the National Center of Hematology, and included 28 patients with newly diagnosed idiopathic AA. Their initial diagnostic data was established from their medical records at the time of sampling. Another 30 apparently healthy individuals, with similar ages and genders, were chosen as a control group. The researchers received ethics approval and only subjects who gave written consent were included in the study. Patient data comprised an analysis of blood components, including a complete blood count, assessment of peripheral blood smears, and testing of BM samples. Other criteria for the inclusion of patients were: no organomegaly, normal renal function, normal liver function, normal Erythrocyte Sedimentation Rate (ESR), a negative serological connective tissue screen, no history of acute febrile illness, and no evidence of organ dysfunction. AA patients were categorized into mild, moderate, severe and very severe. Severe AA was characterized by a reduction in blood counts affecting two or more hematopoietic lineages (i.e., absolute reticulocyte count $<60 \times 10^9$ /L, an ANC $<0.5 \times 10^9$ /L, or platelet count $<20 \times 10^9$ /L) that is accompanied by bone marrow

hypocellularity, defined as less than 25 % of the normal cellularity. Very severe AA was identified by an ANC $<\!0.2\times10^9/L$. While, the decrease in blood counts that did not meet the criteria for severe disease was classified as moderate AA [13]. Both patients and controls were free from chronic illness like diabetes, hypertension and recent febrile illness, as well as serological evidence of acute or chronic viral hepatitis.

Under aseptic circumstances, 3 mL of peripheral blood were drawn from both patients and controls, then dispensed in sterile plain tubes, and centrifuged for ten minutes at 4000 rpm. The serum samples were collected and stored at $-20~^{\circ}\mathrm{C}$ until the IL-8 level was analyzed. As per the instructions provided by the manufacturer, the levels of IL-8 for all participants were measured using a commercial quantitative sandwich ELISA assay kit (R&D Systems, USA). The concentration in pg/mL was used to express the results.

Statistical analysis

The Statistical Analysis System (SAS 2012) program was employed to detect the effect of differences between the groups. The Mann-Whitney test was employed for non-normally distributed continuous variables and a t-test was employed for normally distributed continuous variables. Correlation coefficients between variables were estimated in this study. A p-value \leq 0.05 was considered statistically significant, whereas a p-value \leq 0.01 was considered highly significant [14].

Results

Twenty-eight AA patients were included in this study with a median age of 36.5 ranging from 8–68 years. Of these patients, 15 (53.6 %) were male and 13 (46.4 %) were female with a M:F ratio of 1:1. Thirty samples of apparently healthy volunteers were included as a control group in the analysis with median age of 36.5 ranging between 17 and 67 years and a M:F ratio of 1:1 (Table 1).

Regarding the IL-8 mean serum level, there was an increase in the serum level of IL-8 in AA patients in comparison to the control group (p-value = 0.405). However, data

Table 1 - General characteristics of aplastic anemia patients and the control group. Patient Control p-value (n = 28)(n = 30)Age in years - median 36.5 (8-68) 36.5 (17-67) 0.8260* (Range) Sex - n (%) 0.7993** Male 15 (53.6 %) 15 (50 %) Female 13 (46.4 %) 15 (50 %) Hemoglobin (g/dL) 7.225 ± 0.2803 -Mean \pm SE (Range) (5.1-10)Platelet x $10^3/\mu$ L 20.79 ± 1.816 Mean \pm SE (Range) (7-44)ANC x $10^3/\mu$ L 583.9 ± 53.68 Mean \pm SE (Range) (110-1100)

SE: Standard error; ANC: absolute neutrophil count.

- * t-test.
- ** Fisher's exact test.

Table 2 – Comparison of mean interleukin-8 (IL-8) serum level between aplastic anemia patients and controls.

Aplastic Anemia (n = 28) Control (n = 30) p-value	15.02 ± 2.81 10.19 ± 1.01 0.405

Mann-Whitney test was used for statistical analysis. Test is considered significant if p-value \leq 0.05.

Table 3 – Relationship between severity of disease and mean serum level of interleukin-8 (IL-8) in aplastic anemia patients.

Severity of disease	$\begin{array}{c} \text{Mean} \pm \text{SE} \\ \text{IL-8 (pg\mL)} \end{array}$
Severe (No = 21) Non-severe (No = 7) p-value	17.54 ± 3.59 7.43 ± 0.52 0.0149

Mann-Whitney test was used for statistical analysis. Test is considered significant if p-value \leq 0.05.

Table 4 – Relationship between gender and mean serum level of interleukin-8 (IL-8) of aplastic anemia patients.

Sex	$\begin{array}{c} \text{Mean} \pm \text{SE} \\ \text{IL-8 (pg\mL)} \end{array}$
Male Female p-value	15.76 ± 3.93 14.14 ± 4.16 0.383

T-test was used for statistical analysis. Test is considered significant if P-VALUE \leq 0.05.

indicate a significant difference in mean IL-8 (p-value = 0.0149) between severe and non-severe AA patients (Tables 2 & Table 3).

Moreover, a significant difference in mean serum level of IL-8 was observed between different age groups of patients with AA; higher mean serum levels were found in older patients (p-value = 0.0406). While there was no statistically difference observed in the mean serum level of IL-8 between sexes in AA patients (Tables 4 & 5).

A non-statistically significant (p-value >0.05) correlation coefficient was observed between IL-8 levels and other patient

Table 5 – Relationship between age groups and mean serum level of interleukin-8 (IL-8) of aplastic anemia patients.

Age (Year)	Mean \pm SE IL-8 (pg/mL)
≤40 >40	8.31 ± 0.4492 22.25 ± 5.922
p-value	0.0406

T-test was used for statistical analysis. Test is considered significant if p-value \leq 0.05.

Table 6 – Correlation coefficient between interleukin-8 (IL-8) and different hematological parameters among aplastic anemia patients.

Parameters	Correlation coefficient (r) with IL-8	p-value
Hemoglobin	-0.18	>0.05
platelet count	-0.04	>0.05
ANC	-0.03	>0.05

parameters, such as hemoglobin, platelet count, and ANC (Table 6).

Receiver operating characteristic (ROC) analysis showed that IL-8 with a cutoff value of 7.71 pg/mL was highly significant with good sensitivity and specificity to discriminate between severe and non-severe AA patients (Table 7).

Discussion

IL-8 has the ability to suppress the production of myeloid progenitor cells by impeding their proliferation through a mechanism involving a receptor-ligand interaction (transmitting an inhibitory signal), specifically, IL-8 (CXCR-2), which is expressed on progenitor cells [15]. Since IL-8 has strong stimulatory effects on neutrophils [16], elevated concentrations of this cytokine in the blood stream have the potential to promote activation-induced apoptosis of fully developed neutrophils in the peripheral system [17].

This study shows that AA patients have elevated, albeit non-significant, mean serum IL-8 concentrations in comparison to the control group (p-value >0.05). Previous studies conducted in pediatric and adult patients by Gupta et al., Bhargawa et al., and Singh et al. revealed significant incre-

Table 7 – Receiver operating characteristic (ROC) analysis evaluating the diagnostic accuracy of interleukin-8 levels in aplastic anemia patients.

apassa and an analysis							
Interleukin-8	AUC	Explanation	AUC at 95 % CI	p-value	Optimum cut-off value	SP (%)	SN (%)
Aplastic Anemia versus Control Severe versus non-severe	0.564 0.806	Poor Good	0.415-0.714 0.637-0.975	0.401 0.017	8.33 pg/mL 7.71 pg/mL	50 71.4	64.3 81

AUC: Area under curve; 95 % CI: 95 %confidence interval; SN: sensitivity; SP: specificity.

ments (p-value <0.001) in the IL-8 level of AA patients in comparison to controls (15.58 \pm 18.0 versus 1.85 \pm 0.95, 122.56 \pm 97.79 versus 3.42 \pm 1.73, and 120.28 \pm 94.98 versus 1.79 \pm 0.78, respectively). A recent study confirms these results showing that the median IL-8 level is significantly higher in AA patients than in a control group (320 versus 97; p-value <0.0001) [2,12,18,19]. These findings may give us an idea about the pathology of the AA and the role of cytokines like IL-8 in disease activity and marrow suppression.

Additionally, in the current study, patients diagnosed with AA showed significantly increased mean serum levels of IL-8 in severe AA patients, signifying that IL-8 levels may be playing a role in exacerbating disease progression and severity. This finding agrees with many other studies such as those by Gupta et al., Bhargawa et al., Singh et al., and Khalifa et al., that revealed a significant correlation between an elevated level of IL-8 and the severity of the disease [2,12,18,19]. A study conducted by Tripathy et al. examining bone marrow and peripheral blood samples obtained from AA patients, demonstrated an increase of IL-8 in both samples that correlated with disease severity [8]. Tang et al. also demonstrated the same result using peripheral blood samples [20].

There are several studies that revealed a substantial association between elevated levels of IL-8 in peripheral blood and the severity of the disease. Therefore, IL-8 could have a significant role in the pathogenesis of a severe type of idiopathic AA [18,21]. The present study confirmed other studies suggesting that patients with AA may have an inflammatory background mediated by IL-8 acting as a negative regulator of hematopoiesis [19]. Further studies are encouraged to explore a targeted therapy that inhibits IL-8 in the context of hematological and immunological settings.

Higher levels of IL-8 were detected in the older age group in comparison to patients aged between 20–40 years. This finding is inconsistent with the data on serum IL-8 levels detected in children diagnosed with AA, as elevated concentrations were associated with younger severe AA patients [18].

There was no statistically significant relationship between the mean IL-8 serum level and the mean levels of hemoglobin, platelets, and ANC in the AA patient group. The relationship between IL-8 and peripheral blood indices might not be consistent across patients due to heterogeneity in disease pathophysiology or the severity of AA.

When combining other investigations with our findings, it is evident that patients diagnosed with severe and very severe AA exhibit considerably higher peripheral blood IL-8 levels compared to those with non-severe AA. Moreover, these elevated IL-8 levels demonstrate a positive correlation with disease severity, suggesting a crucial role in the pathogenesis of AA [9,12,19]. Thus, IL-8 might be useful as a discrimination marker with the current study suggesting that the cutoff value of 7.71 pg/mL may separate severe from non-severe AA.

One of the primary limitations of this study is the limited sample size only from a single institution. Consequently, further research involving a large sample size from many institutions is imperative to enhance the generalizability of these findings. Additionally, the lack of patient follow-up after therapy in this study represents a constraint that should be acknowledged.

Conclusion

IL-8 may have a role in the clinical presentation and severity of the AA; the immune-mediated action of IL-8 in patients diagnosed with AA may be associated with an increment in BM hypocellularity and subsequently more profound peripheral blood cytopenias.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding

Self-funded.

Consent

Informed consent was obtained from each participant prior to enrollment in this study

Final approval of manuscript

All the authors.

Ethics approval

Ethics approval is sought from the scientific ethical committee in the National Center of Hematology/ Mustansiriyah University (Reference: nch-erc-20-27), and it conformed to the ethics guidelines of the Declaration of Helsinki.

Conflicts of interest

The authors declare no competing interests.

CRediT authorship contribution statement

Shahla'a Fadhil Sabir: Methodology, Data curation, Project administration, Writing — review & editing. Huda Ibraheem Abd AL-Lateef: Project administration, Writing — review & editing. Naam Ali Hamza: Project administration, Writing — original draft.

Acknowledgements

The authors would like to thank Dr. Mushtaq Mufleh Khazeem for conducting the statistical analysis for the present study.

REFERENCES

- Young NS, Maciejewski J. The pathophysiology of acquired aplastic anemia. New Engl J Med. 1997;336(19):1365–72. https://doi.org/10.1056/NEJM199705083361906.
- Bhargawa SK, Singh A, Yadav G, Kushwaha R, Verma SP, Tripathi AK, Singh US. Aplastic anemia severity and IL-6 and IL-8 blood levels. Discoveries (Craiova). 2022;10(4):e157. https://doi.org/10.15190/d.2022.16.
- 3. Killick SB, Bown N, Cavenagh J, et al. Guidelines for the diagnosis and management of adult aplastic anaemia. Br J Haematol. 2016;172(2):187–207. https://doi.org/10.1111/bjh.13853.
- Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood. 2006;108 (8):2509–19. https://doi.org/10.1182/blood-2006-03-010777.
- Scheinberg P, Chen J. Aplastic Anemia: what Have We Learned From Animal Models and From the Clinic. Semin. Hematol. 2013;50(2):156–64.
- Majika M, Janowaska-Wieczorek A, Ratajczak J, et al. Numerous growth factors, cytokines and chemokines are secreted by human CD34 cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood. 2001;97(10):3075–85. https://doi.org/10.1182/blood.v97.10.3075.
- Narita A, Muramatsu H, Sekiya Y, et al. Paroxysmal nocturnal hemoglobinuria and telomere length predicts response to immunosuppressive therapy in pediatric aplastic anemia. Haematologica. 2015;100(12):1546–52. https://doi.org/10.3324/ haematol.2015.132530.
- 8. Tripathy NK, Nityanand S, Vibhuti. Bone marrow and blood plasma levels of IL-8 in aplastic anemia and their relationship with disease severity. Am J Hematol. 2005;79(3):240–2. https://doi.org/10.1002/ajh.20367.
- Wang L, Liu H. Pathogenesis of aplastic anemia. Hematology. 2019;24(1):559–66. https://doi.org/10.1080/16078454.2019. 1642548.
- Medinger M, Drexler B, Lengerke C, Passweg J. Pathogenesis of Acquired Aplastic Anemia and the Role of the Bone Marrow Microenvironment. Front Oncol. 2018;8:587. https://doi.org/ 10.3389/fonc.2018.00587.

- 11. Gu Y, Hu X, Liu C, Qv X, Xu C. Interleukin (IL)-17 promotes macrophages to produce IL-8, IL-6 and tumour necrosis factor-alpha in aplastic anaemia. Br J Haematol. 2008;142(1):109–14. https://doi.org/10.1111/j.1365-2141.2008.07161.x.
- Khalifa IM, Shawkat SA, Abdelfatah RG. The relation between interleukin-6 and interleukin-8 serum levels and the severity of acquired aplastic anemia in adult patients: a single center study. Egypt J Immunol. 2024;31(3):56–61.
- 13. Camitta BM, Rappeport JM, Parkman R, Nathan DG. Selection of patients for bone marrow transplantation in severe aplastic anemia. Blood. 1975;45(3):355–63.
- 14. SAS. Statistical analysis system, user's guide. statistical. Version 9.1th editor Cary. N.C. USA: SAS. Inst. Inc.; 2012.
- Broxmeyer HE, Cooper S, Cacalano G, Hague NL, Bailish E, Moore MW. Involvement of IL-8 receptor in negative regulation of myeloid progenitor cells in vivo: evidence from mice lacking the murine IL-8 receptor homologue. J Exp Med. 1996;184:1823–5. https://doi.org/10.1084/jem.184.5.1825.
- Sanchez X, Suetomi K, Cousins-Hodges B, Horton JK, Navarro J. CXC chemokine suppress proliferation of myeloid progenitor cells by activation of the CXC chemokine receptor 2. J Immunol. 1998;160(2):906–10.
- 17. Larsen CG, Anderson AO, Appella E, et al. the neutrophils activating protein (NAP-1) is also chemotactic for T-lymphocytes. Science. 1989;243(4897):1464–6. https://doi.org/10.1126/science.2648569.
- Gupta V;, Kumar S;, Sonowal R;, Singh SK. Interleukin-6 and Interleukin-8 Levels Correlate With the Severity of Aplastic Anemia in Children. J Pediatr Hematol Oncol. 2017;39(3):214–6. https://doi.org/10.1097/MPH.000000000000724.
- 19. Singh A, Bhargawa SK, Yadav G, et al. Interleukin-6 and interleukin-8 levels in children with aplastic anemia and its correlation with disease severity and response to immunosuppressive therapy. Ann Afr Med. 2023;22(4):446–50. https://doi.org/10.4103/amm.amm_106_22.
- Tang X, Zhang Y, Shao J. Detection of interleukin-8 level in peripheral blood of patients with aplastic anemia. Zhonghua Xue Ye Xue Za Zhi. 1998;19(4):184–5.
- 21. Kumar VB, Biradar SG, Patil V, Biradar PM, Mithare H, Sharma AK. Clinicohaematological profile of aplastic anaemia in BRIMS, Teaching Hospital, Bidar. Int J Biomedic Adv Res. 2014;5:491–3. https://doi.org/10.7439/IJBAR.V5I10.834.

www.htct.com.br

Original article

Immunological consequences of past transfusions in kidney transplant candidates: A focus on anti-HLA antibody formation

Tamara Perić a,b,*, Svetlana Vojvodić c

- ^a PHI Hospital "Sveti Vračevi" Bijeljina, Bosnia and Herzegovina
- ^b University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
- ^c University of Novi Sad, Faculty of Medicine, Novi Sad, Department for Blood Transfusion of Vojvodina, Serbia

ARTICLE INFO

Article history: Received 11 April 2024 Accepted 23 June 2025

Keywords:
Blood transfusion
Anti-HLA antibodies
Sensitization
Panel reactive antibodies test
Alloimmunization

ABSTRACT

Introduction: Blood transfusions are crucial for saving lives but can affect the recipient's immune system. A significant concern is the development of anti-human leukocyte antigen (HLA) anti-bodies, which can influence organ transplantation outcomes. The presence of these antibodies increases the risk of transplant rejection. The aim of this study was to evaluate how blood component characteristics (leukodepletion, type, number, volume) and timing from the last transfusion to anti-HLA antibody detection affect sensitization in kidney transplant candidates.

Materials and Methods: This retrospective study analyzed 115 candidates on the cadaveric

Materials and Methods: This retrospective study analyzed 115 candidates on the cadaveric kidney transplant list from South Bačka and Novi Sad, Serbia. Among them, 69 received blood transfusions, classified as either leukodepleted or containing leukocytes (WBCs), for sensitization control. Anti-HLA antibodies were detected using Complement-Dependent Cytotoxicity, Enzyme-Linked Immunosorbent Assay, and Luminex technology. This study evaluated demographic data, transfusion history, and sensitization. Statistical analysis focused on the relationship between sensitization and blood component variables.

Results: In this study, 53.7% were sensitized. The number of blood components received (p-value = 0.437), blood unit (p-value = 0.6809), and blood volume (p-value = 0.5857) were not significantly associated with sensitization rates. The use of leukodepleted blood components (p-value = 0.0057), as well as blood components containing WBCs (p-value = 0.030) is associated with a higher sensitization. Sensitization was detected in 67.57 % of cases more than 12 months after transfusion (p-value = 0.046). A significant difference in sensitization was shown when packed red blood cells were used (89.19 % versus 68.75 %; p-value = 0.006). Conclusions: Sensitization was higher with blood components containing WBCs and packed RBCs. The longer time after transfusion, the more often sensitization is detected.

© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^{*} Corresponding author at. University of Novi Sad, Faculty of Medicine, Hajduk Veljkova 3, 21000 Novi Sad, Serbia. E-mail addresses: tasa_93bn@hotmail.com, 1354d19@mf.uns.ac.rs (T. Perić).

Introduction

According to a 2023 report,¹ the overall kidney transplant rate across 40 European countries increased by 1.9 % from 2010 to 2018. Notably, this rate remains higher in Western Europe compared to Eastern Europe. Serbia, however, experienced a 10.8 % decrease in the kidney transplant rate during this period and a significant 46.0 % reduction in live donor kidney transplant rate from 2016 to 2018, positioning it among the top six and top nine countries in these respective categories. Kidney transplantation has a long history in Serbia, with the first procedures conducted in 1970 in Ljubljana and then in 1973 in Belgrade. Over the past 50 years, fewer than 1500 transplants have been performed, with over 70 % being related transplants.² From 2010 to 2021, Serbia carried out 460 kidney transplants, while 725 additional patients were added to the waiting list in 2022.

Kidney transplant is widely recognized as the preferred treatment for end-stage chronic kidney disease (CKD), offering enhanced survival and quality of life. Despite its advantages, kidney transplant is not without significant risks and challenges, including anemia, a common comorbidity in terminal-stage CKD patients. Over the last two decades, management of CKD-related anemia has advanced significantly. Historically, blood transfusions were the primary treatment, but they come with complications such as infections, iron overload, fluid imbalance, and adverse reactions to transfusions.3 Additionally, repeated transfusions increase the risk of alloimmunization, complicating outcomes for patients awaiting renal transplantation. 4 The introduction of recombinant erythropoietin in the late 1980s, followed by erythropoiesis-stimulating agents (ESAs), revolutionized anemia treatment.⁵ These therapies not only reduced the need for transfusions but also improved survival rates, quality of life, cardiac function, and decreased hospital admissions. Importantly, they helped lower the percentage of transplant candidates with high panel reactive antibodies (PRA) levels on the waiting list.6

Sensitization refers to the presence of antibodies in a potential transplant recipient's serum, typically against HLA class I or class II antigens, and occasionally against non-HLA antigens. A key tool used to quantify immune sensitization is the PRA test, which estimates the percentage of the general population to which a patient has preformed anti-HLA antibodies. Higher PRA values indicate a greater degree of sensitization and are associated with longer waiting times, increased risk of graft rejection, and poorer transplant outcomes.^{7,8} Sensitization can occur due to a variety of causes, including blood transfusions, prior transplants, pregnancy, and ventricular assist devices, or sensitization may occasionally arise spontaneously.9 Among these factors, blood transfusions are a major contributor, responsible for approximately 20-33 % of sensitization events, especially in patients who did not receive leukoreduced blood components.¹⁰

Despite red blood cells (RBCs) expressing low levels of HLA class I molecules, their sheer number results in a comparable HLA load to residual WBCs in leukocyte-depleted blood. 11 Previous research highlights the link between RBC transfusions

and HLA sensitization, leading to prolonged waiting times for transplantation and reduced graft survival. ¹² Studies, such as one by Aston et al. in 2014, ¹³ found no significant benefit from additional washing of red cells in reducing HLA sensitization risk. Prevention strategies focus on minimizing transfusions by optimizing iron stores, judicious use of erythropoietin, and selecting transplants with the best possible HLA match.

PRA levels are not only diagnostic but also prognostic: high PRA values prior to transplantation correlate with an increased risk of graft rejection and delayed graft function. 13,8 For instance, each 1 % increase in PRA above 20 % has been linked to a 5 % rise in rejection risk. 14

Preformed anti-HLA antibodies pose a significant risk to transplant success, increasing the likelihood of antibody-mediated rejection and graft loss. Allosensitization from blood transfusions exacerbates these risks, limiting graft availability, prolonging waiting times, and shortening graft survival. Minimizing blood transfusions in CKD patients awaiting transplant is therefore critical to mitigate sensitization and improve transplant outcomes. In kidney recipients, preformed anti-HLA antibodies elevate the risk of antibody-mediated rejection, leading to damage to the transplanted organ. These antibodies adhere to the endothelium, causing hyperacute and acute graft rejection, which results in poor survival outcomes. In

Reducing the formation of new HLA antibodies and minimizing existing ones in kidney patients can enhance transplant success. Research indicates that HLA class I antibodies correlate with acute rejection, ¹⁷ while HLA class II antibodies are linked to chronic rejection. ¹⁸

Objective

The aim of this study was to evaluate the influence of the number, volume and type of blood components received on the appearance of anti-HLA antibodies in patients on the waiting list for kidney transplantation, as well as to evaluate the effect of time from the blood transfusion to the detection of the appearance of HLA antibodies.

Materials and methods

Study population

A one-year (2016) retrospective study involved 115 cadaveric kidney transplant candidates from South Bačka and Novi Sad, Serbia. Of these, 69 received blood component transfusions for sensitization control, while 46 did not. The study adhered to the Declaration of Helsinki, ensuring respondent anonymity, with data presented in aggregated form. This study was approved by the Ethics Committee of the Faculty of Medicine in Novi Sad and Clinical Center of Vojvodina (Novi Sad) - No. 01-14/17-3.

Demographic data and transfusion history were retrospectively collected from the database of the Vojvodina Blood Transfusion Institute. Sensitization was defined as the presence of positive HLA antibodies or a positive Complement Dependent Cytotoxicity (CDC) test result on at least one occasion. The inclusion criteria were patients on the cadaveric

kidney transplant waiting list, undergoing four anti-HLA antibody tests annually (in accordance with the guidelines of the European Federation of Immunogenetics), ¹⁹ and receiving blood component transfusions before sensitization testing.

The blood components that patients received included: packed RBCs, leukoreduced RBCs, resuspended RBCs depleted of WBCs and platelets, resuspended RBCs, fresh frozen plasma, double-leukoreduced RBCs, leukoreduced and washed RBCs, fresh frozen plasma without cryoprecipitate, leukocyte-depleted platelets, and preserved whole blood. For the purposes of this study, we categorized the blood components into two groups: leukodepleted (without WBCs) and those containing WBCs. This classification helps to better understand the impact of the WBC content on sensitization.

Detection of anti-HLA antibodies

Detection of anti-HLA antibodies was performed in the tissue typing laboratory of the Vojvodina Blood Transfusion Institute. The results of detection of anti-HLA antibodies used in the analysis are based on the application of three methods: CDC test, Enzyme-Linked Immunosorbent Assay (ELISA) and Luminex bead-based technology (LMX).

Serum samples were screened for preformed anti-HLA class I antibodies using the CDC test following Terasaki's method as per National Institutes of Health (NIH) guidelines. Samples (1 μ L) were dispensed onto Terasaki trays with a 20cell panel sourced from diverse HLA donors, covering the Vojvodina population alleles. Controls comprised negative sera from male AB donors and positive pooled sera (>80 % PRA). Fresh donor cells (1 μ L of a 2 \times 10⁶/mL suspension) were added and incubated at room temperature for 30 min. Subsequently, 5 μ L of rabbit complement was added to each well, followed by a 60-minute incubation at 22 °C. Lysed and viable lymphocytes were assessed using 5 % eosin dye and 37 % formaldehyde under an inverse phase contrast microscope. Reactivity against 10 % or more panel members indicated significant presensitization. The performance of the ELISA and LMX tests for detecting target analytes was assessed. Reference samples with known concentrations were prepared and tested using both assays. In the ELISA procedure, microplate wells were initially coated with specific capture molecules, followed by incubation with the reference samples. Subsequent steps involved detection of antibody binding, washing, and the addition of a substrate solution for colorimetric detection. The LMX was conducted using the Luminex 100 System with xMap technologies and xPONENT Software, designed for protocol-based data acquisition and robust data regression analysis. The reagents for the LMX were supplied by Immucor (Norcross, GA, USA). Specifically, the LIFECODES LifeScreen Deluxe (LMX) is a Luminex[®] Screening Assay designed for the detection of IgG antibodies against HLA Class I and Class II molecules of human origin. The test involved the preparation of microspheres coated with capture molecules, incubating them with reference samples, adding fluorescently labeled detection molecules, and quantifying the resulting fluorescence intensity using a flow cytometer. Data were analyzed using the MATCH IT! Antibody software.

Analyzed parameters included demographic (gender, age), ABO type, RhD type, anti-HLA class I and II antibody tests,

PRA percentage, blood component details (number, volume, type), and time since blood transfusion to HLA antibody detection.

Statistical analysis

Data were processed in the IBM Statistical Package for Social Sciences, version 23 (SPSS Inc., Chicago, IL) and MedCalc for PC (Medcalc Software, Mariakerke, Belgium). Data analysis methods used descriptive and inferential statistics.

Numeric variables were presented as mean (±SD), while discrete outcomes were shown as absolute and relative (%) frequencies. Two groups were formed based on sensitized patient values, with group comparability assessed through demographic data and follow-up duration. Normality and heteroskedasticity of continuous data were examined using Shapiro-Wilk and Levene's tests, respectively. Continuous outcomes were compared using unpaired Student t-test, Welch t-test, or Mann-Whitney U test based on data distribution. Discrete outcomes were compared using chi-squared or Fisher's exact test accordingly.

Receiver Operating Characteristic (ROC) curves were utilized to predict sensitization based on the number and volume of blood units received. The area under the curve and 95 % confidence intervals were calculated. Multivariate logistic regression was conducted to assess the relationship between sensitization and explanatory variables, including the number of blood components received, number of blood units received, volume of received blood in milliliters, and types of received blood components (with or without WBCs reduction). Data were checked for multicollinearity, heteroskedasticity and normality. Statistical significance was set at a p-value <0.05. Sampling weights were applied during statistical analysis, and results are presented in tables, charts, and diagrams.

Results

Of 115 patients on the kidney transplant waiting list, 46 (40%) had no history of receiving blood units. Consequently, the studied group included the 69 patients (60%) with a history of receiving blood units before transplantation. Table 1 shows data on the gender and ABO type of the examined patients. A total of 69 patients participated in the study, of which 53.7% were sensitized and 46.3% were not sensitized. Among the sensitized patients, almost 60% were female, with the A, RhD positive blood type predominating. Median age was 56.0 (interquartile range [IQR]: 19.0) in patients who were sensitized and 52.0 (IQR 19.25) in patients who were non-sensitized (Median [Yes - No] = 4.0; p-value = 0.032).

A statistically significant difference in the detection of class I and class II HLA antibodies was demonstrated using different techniques (ELISA and LMX) between patients who were sensitized and those who were not. Of the sensitized patients, HLA class I antibodies were detected more often, and in a higher percentage by the LMX technique (81.08%) than by the ELISA technique (45.95%) (Table 2).

No statistically significant difference in the number of received blood units was proven between the examined IQR: Interquartile range

Table 1 – Demographic and clinical characteristics.				
	Sensitized % (53.7 %)	Non- sensitized % (46.3 %)	p-value	
Gender			0.015	
Male	40.5	71.9		
Female	59.5	28.1		
Age	56.0 (IQR: 19.0)	52.0 (IQR: 19.25)	0.032	
ABO type			0.318	
Α	43.2	50		
В	21.6	12.5		
AB	16.2	6.3		
0	18.9	31.3		
RhD type			0.496	
positive	59.2	81.2		
negative	10.8	18.8		

Table 2 – HLA	antibodies dete	ction between gro	oups.
Variable	Sensitized % (53.7)	Non- sensitized % (46.3)	p-value
ELISA I			< 0.001
not valid	8.11	12.5	
detected	45.95	0.0	
not detected	45.95	87.5	
ELISA II			0.002
not valid	8.11	12.5	
detected	27.03	0.0	
not detected	64.86	87.5	
LMX I	0.0	3.12	< 0.001
not valid	81.08	0.0	
detected	18.92	96.88	
not detected			
LMX II	0.0	3.12	< 0.001
not valid	59.46	0.0	
detected	40.54	96.88	
not detected			

ELISA I: Investigation of anti-HLA class I antibodies using the ELISA method; ELISA II: Investigation of anti-HLA class II antibodies using the ELISA method; LMX I: Investigation of anti-HLA class I antibodies using the LMX method; LMX II: Investigation of anti-HLA class II antibodies using the LMX method.

groups (33.27 versus 16.56; p-value = 0.366) (Table 4). An ROC curve (Figure 1) was built to assess the prediction of sensitization in relation to the number of blood units received, with the area under the curve being 0.564 (95% CI: 0.467-0.66) with a cut-off value of 36 units, indicating a weak predictive value of sensitization. Based on the cut off value, we divided the respondents into two groups; a significantly higher percentage of non-sensitized patients received more than 36 units of blood (93.75% versus 70.27%; p-value <0.001) (Table 4). No statistically significant difference was found for the number of blood components received between the two groups (3.19 versus 2.97; p-value = 0.787) (Table 4). No statistically significant difference was identified for the volume of blood received (in milliliters) between the two groups (9.636 L versus 4.673 L; p-

value = 0.396) (Table 4). An ROC curve (Figure 2) was performed to assess the prediction of sensitization in relation to volume of blood received with the area under the curve being 0.56 (95% CI: 0.463-0.657) and a cut-off value of 10.898 mL, which shows a weak predictive value of sensitization. Based on the cut off value, we divided the respondents into two groups; a significantly higher percentage of non-sensitized patients received over 11 L of blood (93.75% versus 72.97%; p-value = 0.003) (Table 4). In multivariate analysis, the number of blood components received (OR = 0.88; 95% CI: 0.65-1.21; p-value = 0.437), number of blood unit received (OR = 0.96; 95% CI: 0.77-1.18; p-value = 0.6809), received blood volume in milliliters (OR = 1.0; 95% CI: 1.0-1.0; p-value = 0.5857) were not associated with the rate of sensitization (Table 6).

A significantly higher percentage of sensitization was found in patients who received blood components with WBCs (89.19% versus 68,75%; p-value = 0.006) compared to non-sensitized patients (Table 4). Among patients who received blood components without WBCs, 91.89% were not sensitized and 96.88% were sensitized; however, this difference was not statistically significant (p-value = 0.618) (Table 4). There was a significant difference in the frequency of using blood components containing white blood cells (WBCs) between sensitized and non-sensitized patients (p-value = 0.011); of the sensitized patients, 78.38% received both leukocyte-containing and leukocyte-depleted blood components, whereas 10.81% received only one or the other; in the non-sensitized group, 62.5% received both types of blood components (with and without WBCs), while 31.25% received components without WBCs, and 6.25% received components with WBCs (Table 4). Multivariate analysis showed that the receipt of blood components with and without white blood cells (WBCs) was associated with a higher rate of sensitized patients (OR = 3.62; 95% CI: 1.45-9.04; p-value = 0.0057). Additionally, the receipt of blood components containing WBCs alone was also associated with a higher rate of sensitization (OR = 5.0; 95% CI: 1.17 -21.39; p-value = 0.03).

Within six months after transfusion, 21.62% of the patients developed sensitization. An additional 10.81% became sensitized between 6 and 12 months, while in the majority (67.57%) sensitization was detected more than 12 months after the transfusion (Table 4). When analysed according to transfusion-related parameters, the highest sensitization rate was observed in patients who developed HLA antibodies 6-12 months after transfusion (80.0%), compared with 56.82% in those with antibody emergence after more than 12 months, and 40.0% in those with antibodies detected within the first six months (Table 5). Patients who developed HLA antibodies within the first year after transfusion had received a significantly higher number of blood units (p-value <0.001), greater volume of transfused blood (p-value <0.001), and more blood components compared to those with later antibody development (p-value = 0.019). Moreover, the type of transfused blood components differed significantly among groups: patients in the >12-month group predominantly received both leukocyte-containing and leukocyte-reduced components, whereas in the <12-month groups, only leukocyte-reduced components were most frequently administered (p-value <0.001).

According to the Eurotransplant Kidney Allocation System (ETKAS) classification, 51.35% of the group of sensitized

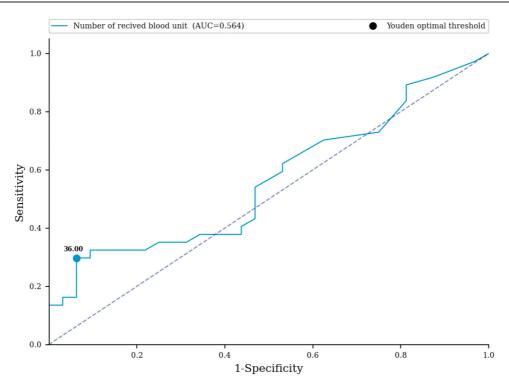


Fig. 1-Receiver Operating Characteristic curve - prediction of sensitization in relation to the number of blood units received.

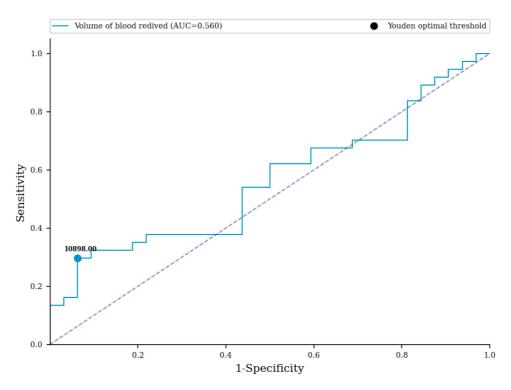


Fig. 2 – Receiver Operating Characteristic curve - prediction of sensitization in relation to the volume (in milliliters) of blood received.

patients were transplantable (Group I), 48.65% were immunized (Group II), and there were no highly immunized patients (Group III). No significant difference was demonstrated in the sensitized patients according to the ETKAS

classification (p-value = 0.869). In this study, significant differences in HLA antibody detection were found between PRA-positive and PRA-negative groups (Table 3; p-value <0.001). Among PRA-positive patients, 61.11% had antibodies for both

Table 3 - Human leukocyte antigen antibody detection between panel reactive antibody groups. HLA I HLA I and II HLA II Total p-value negative PRA positive 0 2 18 < 0.001 5 0.0% 26.09 % 27.78 % 61.11% 11.11% 41.67 % 57.89 % 0.0 % 5.88 % 7.25 % 15.94 % 0.0 % 2.9 % PRA negative 32 51 13.73 % 15.69 % 7.84 % 62.75 % 73.91 % 58.33 % 42.11 % 100.0 % 94.12 % 10.14 % 11.59 % 5.8 % 46.38 % Total 12 19 4 34 69 27.54 % 5.8 % 49.28 % 100 % 17.39 %

PRA: panel reactive antibodies; HLA: human leukocyte antigen.

Variable	Sensitized (53.7 %)	Non-sensitized (46.3 %)	p-valu
Number of blood unit received	12.0 (IQR: 36.0)	10.5 (IQR: 16.5)	0.198
Number of blood units received (based on cut off) - %			< 0.001
0–36	29.73	6.25	
>36	70.27	93.75	
Number of blood components received – mean (± SD)	3.19 (± 1.79)	2.97 (± 1.47)	0.696
	Range: (1.0-8.0)	Range: (1.0-6.0)	
Number of blood components received (based on cut off)			0.106
0–6	10.81	3.12	
>6	89.19	96.88	
Volume of blood received (mL)	3520 (IQR: 9859)	2992.5(IQR: 3916.75)	0.226
Volume of blood received in liters (based on cut off) - %		ŕ	0.003
0–11	27.03	6.25	
>11	72.97	93.75	
Received blood component with WBCs - %			0.006
Yes	89.19	68.75	
No	10.81	31.25	
Received blood component without WBCs - %			0.618
Yes	91.89	96.88	
No	8.11	3.12	
Received blood component - %			0.011
with WBCs	10.81	6.25	
without WBCs	10.81	31.25	
both	78.38	62.5	

HLA class I and II, while 27.78% tested positive for HLA class I antibodies alone, and none had isolated HLA class II antibodies. In contrast, PRA-negative patients had a lower overall rate of sensitization, with 15.69% showing dual sensitization and 7.84% testing positive for isolated HLA class II antibodies. Additionally, PRA-negative patients had a higher percentage of negative HLA results (62.75%) compared to the PRA-positive group (26.09%).

In relation to the type of blood components received, the only significant difference between sensitized and non-sensitized patients was demonstrated when using packed RBCs (89.19% versus 68.75%; p-value = 0.006) (Table 7). The use of other types of blood components is shown in Table 8. In multivariate analysis, blood transfusion (OR = 3.75; 95% CI:1.52-

9.26; p-value = 0.0042) were associated with higher rates of sensitization (Table 6).

Discussion

Compared to the findings of this study, where 53.7 % of the subjects were sensitized, other studies reported slightly lower rates. The study of Loupy et al. in 2012²⁰ found pre-transplant sensitization in up to 30 % of kidney transplant candidates. Susal et al.²¹ reported nearly 25 % of patients on kidney waiting lists had pretransplant anti-HLA antibodies. Of transfused patients, females showed higher rates of sensitization (33-

	<6 month % (29.0)	6–12 month % (7.2)	>12 month % n = (63.8)	p-value
Gender – %				
male	55.0	80.0	52.27	0.248
female	45.0	20.0	47.73	
Age – years	51.85 (± 10.89)	53.8 (± 14.2)	53.5 (± 11.55)	0.642
	Range: (31.0-71.0)	Range: (28.0-64.0)	Range: (35.0-74.0)	
Sensitization - %				0.046
Yes	40.0	80.0	56.82	
No	60.0	20.0	43.18	
Number of blood units received	38.05 (± 43.11)	65.4 (± 74.56)	15.3 (\pm 19.46)	< 0.001
	Range: (2.0-167.0)	Range: (9.0–188.0)	Range: (1.0-107.0)	
Number of blood components received	$3.6~(\pm~1.91)$	$3.8 (\pm 1.4)$	2.77 (± 1.45)	0.019
	Range: (1.0-8.0)	Range: (2.0-6.0)	Range: (1.0-6.0)	
Volume of blood received (mL)	$11,054.75 (\pm 12,543.96)$	18,263.4 (± 20,259.7)	$4401.14~(\pm~6070.36)$	< 0.001
	Range: (490.0-47,142.0)	Range: (2765.0-50,097.0)	Range: (165.0-35,083.0)	
Received blood component - %				< 0.001
with WBCs	0.0	0.0	13.64	
without WBCs	40.0	0.0	13.64	
both	60.0	100.0	72.73	

60 %) compared to males (17-34 %), consistent with the findings of this study with 59.5 % of sensitized women. 22

Several studies have investigated the relationship between blood group antigens and HLA antibodies with varying results. Rouger et al.²³ suggested that blood group antigens could influence the detection and formation of HLA

Table 6 – Multivariate analysis.

Characteristic of blood components in relation to sensitization

	Odds Ratio	p-value
Intercept		
	1.2 (0.546-2.64)	0.649
Number of received blood units		
Risk for each 1-unit increase	0.957 (0.775-1.18)	0.681
Number of received blood components		
Risk for each 1-unit increase	0.884 (0.649-1.21)	0.437
Received blood volume in milliliters		
Risk for each 1-unit increase	1 (0.999-1)	0.586
Type of blood components in relati	on to sensitization	
Intercept		
	1.45 (0.969-2.17)	0.0706
Reference: blood components with and without WBCs		
blood components containing	1.38 (0.389-4.89)	0.619
WBCs		
leukodepleted blood components	0.276 (0.111-0.688)	0.005
The effect of the use of packed RBC	s on sensitization	
Intercept		
	0.4 (0.176-0.908)	0.028
packed RBCs		
	3.75 (1.52–9.26)	0.004
WBC: Leukocyte: RBC: Red blood ce	11.	

antibodies, which is a crucial factor for transplant compatibility and outcomes. Conversely, Erikoglu et al.²⁴ found that blood type does not directly impact the distribution of HLA antigens. Supporting this, Cruz-Tapias et al.²⁵ reported that while blood group antigens might have indirect effects on HLA antibody formation and detection - potentially complicating test interpretation due to cross-reactivity -they are not directly linked to HLA antibody detection but can influence the overall immune response. In contrast, this study found that ABO blood type did not influence the detection of HLA antibodies, aligning with the observations of Erikoglu et al.²⁴ and suggesting that, within this cohort, the blood group antigens do not significantly affect HLA antibody detection.

In the study by Pandey et al. in 2022,26 transfused blood showed a high rate of alloimmunization for HLA class I antigens. Picascia et al.²⁷ observed a higher frequency of anti-HLA antibodies for class I compared to class II, although not statistically significant. In this study, of the sensitized patients receiving blood transfusions, HLA class I antibodies were more frequently detected by LMX (81.08 %) than ELISA (45.95 %). Of the PRA-positive patients, HLA class I antibodies were detected in the highest percentage (88.89 %), and HLA class II antibodies in 61.11 %. Vasic et al.²⁸ found that nearly half of the patients received less than ten units of blood, with an average sensitization level of 13.61 %. Handa et al.²⁹ reported no significant association between the number of transfused units and alloimmunization. Similarly, Vasic et al.28 noted higher sensitization levels in patients receiving more than 3000 mL of transfused blood. In the present study, patients receiving less than 11 L of blood components had an average sensitization level (PRA) of 4.82 %, compared to 25 % in those receiving more.

Bilgin et al.³⁰ found that transfusion of leukocyte-depleted platelets significantly reduces the formation of anti-HLA anti-bodies. In the current study, blood components with depleted WBCs showed a higher rate of sensitized patients (12.5 %)

Table 7 – Transfusion of different blood components between groups.

Variable		Sensitized %(53.7)	Non-
sensitized	p-value		
%(46.3) Packed RBCs			0.005
	90.10	C0 7F	0.006
Yes	89.19	68.75	
No	10.81	31.25	. 0.000
Leukoreduced RBCs Yes	40.54	40.60	>0.999
	40.54	40.62	
No	59.46	59.38	0.050
Resuspended RBCs	60.46	50.40	0.368
depleted of WBCs	62.16	53.12	
and platelets	37.84	46.88	
Yes			
No			
Resuspended RBCs			>0.999
Yes	62.16	62.5	
No	37.84	37.5	
Fresh Frozen Plasma			0.246
Yes	29.73	40.62	
No	70.27	59.38	
Double Leukoreduced			0.686
RBCs	5.41	3.12	
Yes	94.59	96.88	
No			
Leukoreduced and			0.686
washed RBCs	5.41	3.12	
Yes	94.59	96.88	
No			
Fresh Frozen Plasma			0.545
without cryoprecipi-	13.51	18.75	
tate	86.49	81.25	
Yes			
No			
leukocyte-depleted			>0.999
platelets	2.7	3.12	
Yes	97.3	96.88	
No			
preserved whole blood			0.285
Yes	8.11	3.12	
No	91.89	96.88	

WBC: Leukocyte; RBC: Red blood cell.

compared to those without (5 %), but the difference was not statistically significant (p-value = 0.03). Vasic et al.²⁸ similarly found no significant difference in sensitization levels between patients receiving leukoreduced RBC units and those who did not. Previous studies by Karpinski et al.31 also showed no difference in allosensitization rates between standard and leukoreduced RBC transfusions. Despite WBC reduction, alloimmunization rates vary widely, ranging from 7-44 % among recipients of leukocyte-reduced blood transfusions and from 20-50 % among control recipients of non-leukoreduced blood components.32 As explained in one study,33 sensitization levels are similar between recipients of leukoreduced and non-leukoreduced blood components. The authors suggest that residual WBCs and RBCs carrying HLA antigens may contribute to the reduced effectiveness of leukoreduced units in preventing sensitization. Vasić et al.²⁸ observed lower sensitization levels with longer periods since the last transfusion, suggesting that the longer the time elapsed, the less likely it is for the patient to develop alloimmunization. This contrasts with the findings of the present study, where patients who developed HLA antibodies more than 12 months post-transfusion still showed a relatively high rate of sensitization (56.82 %). However, a closer examination of these data reveals that those who developed antibodies earlier (within 6-12 months) exhibited the highest sensitization rates (80 %), indicating that the intensity and frequency of transfusions within the first year play a critical role in sensitization. While the findings of Vasić et al. highlight the potential decline in sensitization over time, the results of this study emphasize the significance of transfusion-related parameters, such as the number of transfusions and blood components, in the development of HLA antibodies, which could suggest that the type and extent of exposure to transfused blood have a more substantial impact on the sensitization process than the mere passage of time.

In the study of Vasic et al. in 2013, 28 the mean PRA value in patients receiving blood components was 16.04 %, consistent with the average PRA value of the current study with 15.54 %, both falling into the ETKAS II group (PRA 6-85 %). Karahan et al.³⁴ reported that among patients with positive PRA, 47.6 % had positive HLA class I antibodies, 16.7 % had positive HLA class II antibodies, and 35.7 % had positive HLA antibodies for both classes. In this study, 27.78 % of the PRA-positive patients had HLA class I, 61.11 % had HLA class I and II, and none had only class II. Additionally, 11.11 % of PRA-positive patients were negative for HLA antibodies. The findings of this study show a higher prevalence of dual sensitization (both class I and II) compared to Karahan et al.³⁴ Marfo K. et al. 16 reported 35 % of patients on the waiting list had PRA values >0 %, with 15 % highly sensitized (PRA levels >80). In the present study, according to the ETKAS classification, 51.35 % of the sensitized patients were transplantable (Group I, PRA<6 %), 48.65 % were immunized (Group II, PRA 6-85 %), and none were highly immunized (Group III, PRA >85 %). No significant difference was found in sensitized patients based on the ETKAS classification. In this study, a significant difference in sensitization rates was found between patients who received packed RBCs and those who did not, with a 3.75 times higher likelihood of sensitization in the former group. Recent analysis using LMX technology from the US Renal Data System revealed that RBC transfusions can strengthen and broaden HLA antibodies. Laffell et al. 10 reported a 20 % antibody response rate in patients receiving RBCs transfusions, leading to a tenfold increased relative risk of broad sensitization and a 32-point mean increase in PRA. These findings suggest a causal link between RBCs transfusions and clinically relevant HLA antibody development, resulting in a significant decrease in available donor organs. Therefore, minimizing transfusions whenever possible for patients on the transplant waiting list is crucial.

Conclusion

The study findings suggest that while the total number, volume, and units of blood components received do not significantly contribute to an increase in anti-HLA antibodies or

sensitization, the kind of blood component plays a crucial role. Specifically, transfusions involving blood components containing leukocytes are more likely to lead to sensitization. Among blood cell components, the transfusion of packed RBCs is associated with a higher incidence of sensitization compared to other blood components. Additionally, the time elapsed since transfusion is a significant factor, with a longer interval post-transfusion being correlated with a higher likelihood of detecting sensitization.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflicts of interest

None.

REFERENCES

- 1. Boenink R, Kramer A, Tuinhout RE, Savoye E, Åsberg A, Idrizi A, et al. Trends in kidney transplantation rate across Europe: study from the ERA Registry. Nephrol Dial Transplant. 2023;38 (6):1528–39. https://doi.org/10.1093/ndt/gfac333.
- Yabu JM, Anderson MW, Kim D, Bradbury BD, Lou CD, Petersen J, Rossert J, Chertow GM, Tyan DB. Sensitization from transfusion in patients awaiting primary kidney transplant. Nephrol Dial Transplant. 2013;28(10):2560–5. https://doi.org/10.1093/ndt/gft362.
- 3. Shaikh H, Hashmi MF, Aeddula NR. Anemia of chronic kidney disease. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK500000/.
- Vuković M, Vuković V, Moljević N, Krivokuća D, Zečević M. Istorija Transplantacije Organa. Medicina Danas. 2009;8(7 –9):276–9.
- Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med. 1987;316(2):73–8.
- United States Renal Data System. USRDS 2012 annual data report: atlas of end-stage renal disease in the united states. volume 2, chapter 10. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2012.
- Süsal C, Opelz G. Kidney graft failure and presensitization against HLA class I and class II antigens. Transplantation. 2002;73(8):1269–73.
- Cecka JM. Calculated PRA (CPRA): the new measure of sensitization for transplant candidates. Am J Transplant. 2010;10
 (1):26–9.
- Heidt S, Claas FHJ. Transplantation in highly sensitized patients: challenges and recommendations. Expert Rev Clin Immunol. 2018;14(8):673–9. https://doi.org/10.1080/1744666X. 2018.1498335.
- 10. Leffell MS, Kim D, Vega RM, et al. Red blood cell transfusions and the risk of allosensitization in patients awaiting primary kidney transplantation. Transplantation. 2013;95(5):525–33.

- 11. Scornik JC, Meier-Kriesche HU. Blood transfusions in organ transplant patients: mechanisms of sensitization and implications for prevention. Am J Transplant. 2011;11(9):1785–91.
- Obrador GT, Macdougall IC. Effect of red cell transfusions on future kidney transplantation. Clin J Am Soc Nephrol. 2013;8 (5):852–60.
- Aston A, Cardigan R, Bashir S, et al. Washing red cells after leucodepletion does not decrease human leukocyte antigen sensitization risk in patients with chronic kidney disease. Pediatr Nephrol. 2014;29(10):2005–11. https://doi.org/10.1007/ s00467-014-2823-6.
- 14. Lim WH, Chapman JR, Wong G. Peak panel reactive antibody, cancer, graft, and patient outcomes in kidney transplant recipients. Transplantation. 2015;99(5):1043–50.
- 15. Ibrahim HN, Skeans MA, Li Q, et al. Blood transfusions in kidney transplant candidates are common and associated with adverse outcomes. Clin Transpl. 2011;25(5):653–9.
- 16. Marfo K, Lu A, Ling M, et al. Desensitization protocols and their outcome. Clin J Am Soc Nephrol. 2011;6(4):922–36.
- 17. Halloran PF, Schlaut J, Solez K, Srinivasa NS. The significance of the anti-class I response. Transplantation. 1992;53(3):550–5.
- Snyder LD, Wang Z, Chen DF, et al. Implications for Human leukocyte antigen antibodies after lung transplantation: a 10year experience in 441 patients. Chest. 2013;144(1):226–33.
- European Federation for Immunogenetics. Standards for histocompatibility and immunogenetics testing-version 8.2.
 Available from: https://efi-web.org/fileadmin/Efi_web/Standardv8_280819.pdf (Accessed September 04, 2023).
- Loupy A, Hill GS, Jordan SC. The impact of donor-specific anti-HLA antibodies on late kidney allograft failure. Nat Rev Nephrol. 2012;8(6):348–57.
- 21. Süsal C, Opelz G. Options for immunological support of renal transplantation through the HLA and immunology laboratories. Am J Transplant. 2007;7(6):1450–9.
- 22. Hyun J, Park K, Yoo Y, et al. Effects of different sensitization events on HLA alloimmunization in solid organ transplantation patients Paper presented at:. In: Transplantation Proceedings: 2012.
- Rouger P. Influence des antigènes de groupes sanguins en transplantation. Transfus Clin Biol. 2005 Nov;12(5):403–8. https://doi.org/10.1016/j.tracli.2005.11.002. PMID: 16330233.
- 24. Erikoglu M, Büyükdogan M, Cora T. The relationship between HLA antigens and blood groups. Eur J Gen Med. 2011;8(1):65–8. https://doi.org/10.29333/ejgm/82699. Available from:.
- 25. Cruz-Tapias P, Castiblanco J, Anaya JM, et al. Major histocompatibility complex: antigen processing and presentation editors. In: Anaya JM, Shoenfeld Y, Rojas-Villarraga A, eds. Autoimmunity: from bench to bedside [Internet], Bogota (Colombia): El Rosario University Press; 2013 Jul 18. Chapter 10. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459467/.
- Pandey P, Pande A, Mandal S, et al. Effects of different sensitization events on HLA alloimmunization in renal transplant cases; a retrospective observation in 1066 cases. Transpl Immunol. 2022;75:101680. https://doi.org/10.1016/j.trim.2022.101680.
- Picascia A, Grimaldi V, Sabia C, Napoli C. Comprehensive assessment of sensitizing events and anti-HLA antibody development in women awaiting kidney transplantation. Transpl Immunol. 2016;36(1):14–9. https://doi.org/10.1016/j. trim.2016.03.002.
- Vasić N, Vojvodić S, Ademović-Sazdanić D. Detection of presensitization in recipients of kidney transplants. Open Med. 2013;8(3):310–6. https://doi.org/10.2478/s11536-012-0086-9.
- Handa A, Kukar N, Maharishi RN, Syal N, Arora H. Analysis of red cell alloimmunization in multi-transfused patients at a tertiary care teaching hospital. J Family Med Prim Care. 2020;9(6):2907– 11. https://doi.org/10.4103/jfmpc.jfmpc_351_20.

- Bilgin YM, van de Watering LM, Brand A. Clinical effects of leucoreduction of blood transfusions. Neth J Med. 2011;69 (10):441–50.
- 31. Karpinski M, Pochinco D, Dembinski I, Laidlaw W, Zacharias J, Nickerson P. Leukocyte reduction of red blood cell transfusions does not decrease allosensitization rates in potential kidney transplant candidates. J Am Soc Nephrol. 2004;15 (3):818–24.
- 32. Vamvakas EC. Meta-analysis of randomized controlled trials of the efficacy of white cell reduction in preventing HLA-
- alloimmunization and refractoriness to random-donor platelet transfusions. Transfus Med Rev. 1998;12(3):258–70.
- 33. Scornik JC, Meier-Kriesche HU. Blood transfusions in organ transplant patients: mechanisms of sensitization and implications for prevention. Am J Transplant. 2011;11(9):1785–91.
- 34. Karahan GE, Kekik C, Oguz FS, Onal AE, Bakkaloğiu H, Çalişkan YK, Yazici H, Turkmen A, Aydin AE, Sever MS, Eldegez U. Association of HLA phenotypes of end-stage renal disease patients preparing for first transplantation with anti-HLA antibody status. Renal Fail. 2010;32(3):380–3.

www.htct.com.br

Review article

COVID-19 Microangiopathy: Insights into plasma exchange as a therapeutic strategy

Yigit Baykara ^a, Kaan Sevgi ^b, Yamac Akgun ^{c,*}

- ^a Stanford University Department of Pathology, Stanford, USA
- ^b Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
- ^c University of Miami Miller School of Medicine, Miami, FL, USA

ARTICLE INFO

Article history: Received 30 March 2025 Accepted 21 May 2025 Available online 23 August 2025

Keywords: COVID-19 Plasma exchange Thrombotic microangiopathy Coagulopathy

ABSTRACT

COVID-19-associated thrombotic microangiopathy has emerged as a severe complication that exacerbates morbidity and mortality in critical cases. Thrombotic microangiopathy, characterized by microvascular thrombosis and endothelial injury, includes conditions like thrombotic thrombocytopenic purpura and atypical hemolytic uremic syndrome. This review investigates therapeutic plasma exchange as a potential strategy to mitigate COVID-19-induced thrombotic microangiopathy, examining its role in removing proinflammatory cytokines, immune complexes, and pro-thrombotic factors. Additionally, it highlights the synergistic effects when therapeutic plasma exchange is combined with treatments such as complement inhibitors and immunosuppressants. Preliminary evidence, drawn from case reports and early trials, supports the efficacy of therapeutic plasma exchange in improving outcomes for COVID-19-associated thrombotic microangiopathy. However, larger randomized controlled trials are necessary to definitively establish its place in COVID-19 management, particularly for high-risk and transplant patients with underlying immunological vulnerabilities.

© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

COVID-19, caused by the SARS-CoV-2 virus, has demonstrated a wide range of complications, with thrombotic microangiopathy (TMA) being among the most severe [1]. TMA encompasses conditions such as thrombotic thrombocytopenic purpura (TTP) and atypical hemolytic uremic syndrome (aHUS), both of which involve microvascular thrombosis,

E-mail address: yxa312@miami.edu (Y. Akgun). https://doi.org/10.1016/j.htct.2025.103963

organ dysfunction, and poor outcomes [2]. COVID-19-induced endothelial injury plays a central role in the development of these conditions [3]. Endothelial cells, when damaged by the virus, become dysfunctional and initiate coagulation pathways, contributing to TMA development. This endothelial dysfunction is also compounded by the 'cytokine storm', where excessive inflammatory responses lead to widespread tissue damage and thrombosis [4].

Understanding the pathophysiology of these conditions in the context of COVID-19 is critical for optimizing treatment. COVID-19 has been shown to trigger complement activation, a vital part of innate immunity, which unfortunately also leads to exaggerated inflammatory and coagulation

 $^{^{}st}$ Corresponding author at: Children's Hospital Los Angeles, USA.

responses [5]. Studies have highlighted that excessive complement activation leads to microthrombus formation in several organs, such as the lungs and kidneys, contributing to multi-organ failure in critically ill patients [6].

Additionally, imbalances in von Willebrand factor (VWF) and ADAMTS13, a metalloprotease that cleaves VWF, are implicated in COVID-19-related microangiopathy [7]. An increase in circulating VWF, coupled with a deficiency of ADAMTS13, leads to unchecked thrombosis and is particularly evident in TTP and aHUS [7,8]. This imbalance exacerbates thrombus formation, especially in microvascular beds, which contributes to organ damage, particularly in the lungs and kidneys [8]. Thus, addressing these pathophysiological changes is crucial for effective management of COVID-19-associated TMA.

Therapeutic plasma exchange (TPE) has emerged as a potential treatment modality for managing COVID-19-associated TMA. TPE works by removing large volumes of plasma containing pro-inflammatory cytokines, immune complexes, and pro-thrombotic factors, thus addressing the hypercoagulable state seen in these patients [9]. Several case reports and small trials have reported promising results with TPE, especially when used in conjunction with other therapies such as complement inhibitors and immunosuppressants [10,11].

Pathophysiology of microangiopathy in COVID-19

SARS-CoV-2 primarily affects the endothelium, leading to widespread endothelial dysfunction and microvascular thrombosis. The virus directly infects endothelial cells via the angiotensin-converting enzyme 2 receptor, leading to cellular damage, inflammation, and apoptosis [12]. The resulting endothelial injury activates both immune and coagulation systems, creating a pro-thrombotic state and driving the development of TMA [13]. This process is particularly problematic in critically ill patients, where endothelial injury plays a central role in organ dysfunction and multi-organ failure. Key contributors to this pathophysiology include:

- Cytokine storm: The hyperinflammatory state induced by COVID-19, often referred to as a 'cytokine storm', triggers widespread endothelial injury. This storm is characterized by the excessive release of pro-inflammatory cytokines such as interleukin-6, tumor necrosis factor-alpha, and interleukin-1 [14]. These cytokines amplify immune responses and lead to direct endothelial cell activation and damage. This hyperinflammatory state contributes to an uncontrolled immune response that results in microvascular damage and thrombus formation.
- Complement dysregulation: Excessive activation of the complement system is a hallmark of severe COVID-19, exacerbating microthrombus formation [15]. Normally, the complement system functions as part of the innate immune defense, but in COVID-19, overactivation leads to endothelial cell injury and the formation of microthrombi. Specifically, complement factors such as C5b-9, a membrane attack complex, have been found to deposit on endothelial surfaces, leading to cell lysis and inflammation [16].

- This dysregulation has been strongly implicated in both thrombotic TTP and aHUS, both of which are forms of TMA.
- VWF and ADAMTS13 imbalance: One of the most critical aspects of COVID-19-associated microangiopathy is the imbalance between VWF and ADAMTS13, a metalloprotease responsible for cleaving VWF to prevent excessive clot formation [7]. COVID-19 induces a significant release of VWF from endothelial cells due to the extensive endothelial activation and damage. Simultaneously, levels of ADAMTS13 decrease, possibly due to consumption or direct inhibition by inflammatory mediators [17]. The resultant accumulation of high-molecular-weight VWF multimers leads to unchecked platelet aggregation and microthrombus formation, particularly in the lungs and kidneys. This imbalance is a driving force behind TTP and aHUS, contributing to severe complications such as acute kidney injury and respiratory failure.

Additionally, other coagulation abnormalities in COVID-19, such as elevated D-dimer levels and fibrin degradation products, further support the role of endothelial dysfunction and the pro-thrombotic state in the development of microangiopathies [18]. This constellation of endothelial injury, immune dysregulation, and coagulation imbalance highlights the complexity of managing COVID-19-induced microangiopathies and underscores the need for targeted therapeutic interventions.

Clinical manifestations of GOVID-19-Associated thrombotic microangiopathy

TMA in COVID-19 patients presents with a wide range of clinical manifestations, affecting multiple organs. The endothelial damage, hyperinflammation, and coagulation abnormalities that characterize COVID-19 contribute to the widespread nature of TMA, impacting the lungs, kidneys, and other organ systems [19]. The severity of these manifestations often correlates with poor clinical outcomes, including multiorgan failure and death.

- Lung involvement: One of the most severe clinical manifestations of COVID-19-associated TMA is lung involvement, which can lead to acute respiratory distress syndrome (ARDS) [20]. SARS-CoV-2-induced endothelial injury in the pulmonary vasculature results in microvascular thrombosis, impaired gas exchange, and widespread inflammation [21]. Studies have shown that microthrombi in the pulmonary capillaries contribute significantly to the severe hypoxia seen in ARDS [22]. Autopsy findings in patients who succumbed to COVID-19 have revealed extensive pulmonary microthrombi, reinforcing the link between microangiopathy and respiratory failure [23]. Furthermore, elevated levels of VWF in the lungs exacerbate clot formation, contributing to the development of TMA-related lung complications such as ARDS.
- Renal involvement: The kidneys are also highly susceptible to damage in COVID-19-associated TMA, with acute kidney injury being a frequent and severe complication [24]. Endothelial injury, along with microvascular thrombosis in the

renal vasculature, leads to reduced perfusion, ischemia, and tissue damage. In severe cases, COVID-19 patients may develop aHUS, characterized by hemolysis, thrombocytopenia, and kidney failure [25]. The activation of the complement system and its deposition in the renal microvasculature are critical drivers of kidney injury in COVID-19 patients with TMA [26]. Complement-mediated endothelial injury further exacerbates kidney damage, leading to a rapid decline in renal function and, in many cases, the need for renal replacement therapy [26].

• Systemic microvascular dysfunction: Systemic microvascular dysfunction is a hallmark of severe COVID-19-associated TMA and is often indicative of a poor prognosis [27]. As microthrombi form in various organs, multiorgan failure ensues. The heart, liver, gastrointestinal system, and central nervous system are among the organs affected by systemic microthrombi [28]. For instance, myocardial injury in COVID-19 patients has been attributed to microthrombosis within the coronary vasculature, contributing to heart failure and arrhythmias [29]. Hepatic involvement, manifested by elevated liver enzymes and, in severe cases, liver failure, is also observed due to microvascular injury [30]. Neurological symptoms, such as confusion, delirium, and stroke, have been associated with microthrombi and endothelial dysfunction in the cerebral vasculature [31].

As systemic microvascular thrombosis progresses, patients often develop multi-organ failure, a leading cause of death in critically ill COVID-19 patients [32]. The widespread endothelial dysfunction and uncontrolled microthrombosis place immense strain on multiple organ systems, ultimately leading to irreversible damage. Elevated markers of endothelial damage, such as VWF and fibrinogen, are frequently observed in these patients and serve as indicators of severe disease progression [33].

Mechanism of therapeutic plasma exchange (TPE)

TPE is a blood filtration method used to treat a variety of immune-mediated and inflammatory conditions by removing large volumes of plasma, which contains pathological components such as pro-inflammatory cytokines, immune complexes, and coagulation factors [34]. In the context of COVID-19-associated TMA, TPE has gained attention due to its ability to address the underlying mechanisms driving the severe inflammatory and thrombotic responses observed in patients [10]. By clearing the responsible agents from the bloodstream, TPE helps restore balance to the immune and coagulation systems, thus mitigating the progression of TMA and improving clinical outcomes [35]. The benefits of TPE in COVID-19-associated TMA stem from its ability to target several key pathological processes:

 Reduction in inflammatory mediators: By removing large volumes of plasma, TPE significantly reduces the circulating levels of these cytokines, thereby helping to control the cytokine storm and reduce the risk of multi-organ failure [36]. Studies have shown that the reduction of cytokines through TPE can lead to clinical improvement in critically

- ill COVID-19 patients, reducing inflammation and its associated complications [37].
- Restoration of coagulation balance: By clearing excess VWF and replenishing ADAMTS13, TPE helps to restore normal clotting function, reducing the risk of thrombus formation in the lungs, kidneys, and other organs. Furthermore, the removal of immune complexes, which can also contribute to microvascular damage, helps to decrease the pro-thrombotic state [38].
- Mitigation of complement activation: TPE is effective in removing circulating complement proteins, including C3a and C5a, which play a crucial role in the inflammatory and thrombotic processes associated with TMA. By reducing complement activation, TPE can mitigate endothelial damage and reduce the likelihood of microvascular thrombosis.

In addition to these mechanisms, TPE also provides benefits by removing other circulating pathological substances, such as autoantibodies, that may contribute to the progression of TMA [39]. The process typically involves exchanging large volumes of plasma, which is then replaced with donor plasma or albumin. This replenishment helps to restore the levels of essential plasma components, including clotting factors and regulatory proteins, further supporting the patient's recovery [40].

Evidence supporting therapeutic plasma exchange in COVID-19 microangiopathy

There are several case reports, case series, and studies supporting the benefit of TPE in the treatment of COVID-19-associated TMA (Table 1). Elkayam et al. described a patient who developed TMA in the context of severe COVID-19 infection [41]. The patient received TPE in addition to dexamethasone as standard of care and showed clinical improvement including renal function and declining vasopressor requirement as well as increase in platelets and normalization of hemolysis laboratory results. They attributed to this improvement to cytokine removal of inflammatory mediators which is also suggested by Zhang et al. in their case series of three patients with severe COVID-19 patients with ARDS [42]. Ten days after the treatment, all patients showed resolved respiratory symptoms, improvement of lesions on computed tomography scan, two negative nucleic acid tests and normal body temperature for three days. They claimed that TPE had an acute effect on the treatment of cytokine storm and henceforth led to improvement of the symptoms and radiological/laboratory findings. Similarly, Shi et al. presented a patient with COVID-19 infection who developed respiratory failure, shock and diarrhea and failed to respond to standard therapies [43]. The patient received TPE followed by Intravenous immunoglobulin (IVIG) and showed an immediate clinical response to therapy, supporting the hypothesis that TPE might help signs and symptoms of COVID-19 by removing the cytokines from circulation.

In a study by Arulkumaran et al., five patients who received TPE for severe COVID-19 complicated by ARDS showed improvements in oxygenation and reversal of the thrombo-inflammatory markers [44]. They identified a high

Study/Authors	Patients and Condition	Treatment Provided	Clinical Results
Elkayam et al. [41]	1 patient with severe COVID-19 and TMA	TPE + dexamethasone	Improved renal function, decreased vasopressor requirement, increased platelet counts, normalization of hemolysis parameters
Zhang et al. [42]	3 patients with severe COVID-19 and ARDS	TPE	Resolution of respiratory symptoms, improved CT lesions, negative nucleic acid tests, normalized temperature
Shi et al. [43]	1 patient with COVID-19, respiratory failure, shock, diarrhea	TPE followed by IVIG	Immediate clinical improvement
Arulkumaran et al. [44]	5 patients with severe COVID-19 complicated by ARDS	TPE	Improved oxygenation and reversal of thrombo-inflammatory markers; high VWf:ADAMTS13 ratio observed
Eriko et al. [45]	1 HIV-positive patient with COVID-19-associated TMA	TPE, glucocorticoids, hemodialysis, antihypertensives	Improved renal function and thrombocytopenia
Vrecko et al. [46]	8 patients: 1 with TTP, 7 with aHUS and COVID-19	TTP patient: TPE, steroids, caplacizumab aHUS patients: TPE ± steroids, C5 complement inhibitor, IVIG	Complete hematologic recovery in TTP patient. Rapid hematologic recovery in all aHUS patients; full renal recovery in only one aHUS patient
Cohen et al. [47]	1 patient with COVID-19-associated TTP	TPE, steroids, caplacizumab	Improved abdominal pain, normali- zation of platelets, hemoglobin, and ADAMTS13
Tehrani et al. [48]	4 patients with COVID-19-associated TTP (2 treated with TPE)	TPE ± Rituximab	Patient 1: Normalization of hemoglobin and platelets Patient 2: No initial response; later response with Rituximab but even- tual death due to hemorrhagic stroke

VWf Ag:ADAMTS13 ratio in the patients which is comparable to the parameters seen in TMA. Eriko et al. reported a patient with a past medical history of human immunodeficiency virus, who was diagnosed with TMA secondary to COVID-19 [45]. The patient received TPE, glucocorticoids, hemodialysis, and antihypertensives which contributed to improvements in renal function and thrombocytopenia. Vrecko et al. reported the results of their case series of eight patients with COVID-19-associated TMA including one patient with TTP and seven patients with aHUS [46]. The patient with TTP was treated with TPE, steroids and caplacizumab resulting in complete hematologic recovery. Six patients with aHUS were treated with TPE with or without steroids, C5 complement inhibitor and IVIG while the other patient with aHUS was only treated with steroid and C5 complement inhibitor. While all patients with aHUS showed rapid hematologic recovery, only one of them had full renal function recovery.

Cohen et al. presented a case of TTP in the setting of COVID-19 who was treated with TPE, steroids, and caplacizumab. This patient responded to therapy with improvement of the abdominal pain and normalization of platelets, hemoglobin, and ADAMTS13 [47]. Tehrani et al. reported another case series of four COVID-19-associated TTP patients two of whom were treated with TPE [48]. The first patient responded well to the therapy with normalization of hemoglobin and platelet levels. Even though the second patient did not respond to TPE initially, with the addition of rituximab, hemoglobin and platelet levels became normal although she succumbed to death due to hemorrhagic stroke in her frontal cortex.

Discussion

The emergence of TMA as a complication of severe COVID-19 has brought renewed attention to the complex interplay between endothelial injury, inflammation, coagulation dysregulation, and immune activation. This review consolidates the current understanding of COVID-19-associated TMA and explores TPE as a targeted intervention.

The pathogenesis of COVID-19-associated TMA appears multifactorial. SARS-CoV-2 infects endothelial cells through the angiotensin-converting enzyme 2 receptor, triggering endothelial dysfunction and subsequent activation of coagulation and complement cascades. The cytokine storm further amplifies these processes, while the imbalance between VWF and ADAMTS13 promotes unchecked microthrombus formation. This cascade results in systemic microvascular injury affecting critical organs such as the lungs, kidneys, heart, and brain.

TPE has shown potential in addressing multiple pathological mechanisms underpinning COVID-19-induced TMA. By removing pro-inflammatory cytokines, immune complexes, complement components, and excess VWF, TPE helps attenuate the hyperinflammatory and prothrombotic state. In addition, the replacement plasma replenishes regulatory proteins such as ADAMTS13 and mitigates ongoing vascular injury.

The clinical evidence supporting the use of TPE in COVID-19-associated TMA remains limited but encouraging. Case reports and small case series have documented favorable outcomes, including rapid hematologic improvement, reversal of organ dysfunction, and improved survival in patients with both TTP and aHUS phenotypes. Notably, these outcomes were observed when TPE was employed in combination with immunosuppressants, steroids, and complement inhibitors, highlighting the importance of multimodal therapy.

Nevertheless, the use of TPE in COVID-19 remains controversial due to a lack of large-scale randomized controlled trials. The heterogeneity of TMA presentations, variability in TPE protocols, and differences in co-interventions make it challenging to draw definitive conclusions. Furthermore, TPE is resource-intensive, limiting its widespread application in resource-limited settings. Careful patient selection and early recognition of TMA features are crucial for optimizing outcomes

Conclusion

COVID-19-associated TMA represents a severe manifestation of endothelial and immune dysregulation with significant morbidity and mortality. TPE offers a promising strategy to mitigate the cascade of inflammation, complement activation, and thrombosis characteristic of this condition. Early evidence supports its use, especially in cases mimicking TTP or aHUS, and when integrated with other immunomodulatory therapies. However, robust clinical trials are urgently needed to clarify patient selection criteria, treatment timing, and optimal adjunctive therapies. As our understanding of COVID-19-associated microangiopathy evolves, TPE may emerge as a cornerstone of therapy for selected patients, offering a lifeline in an otherwise devastating disease trajectory.

Author contributions statement

Dr. Yigit Baykara, Dr. Yamac Akgun and Kaan Sevgi contributed to all aspects of this review, including conceptualization, conducting the literature review, and manuscript preparation.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgments

We extend our deepest gratitude to the researchers and clinicians dedicated to advancing the understanding and treatment of COVID-19 microangiopathy.

Ethical approval statement

Ethical approval is not applicable to this study as it does not involve human or animal subjects requiring institutional review board approval.

Patient consent statement

Patient consent is not applicable as no individual patient data is included in this manuscript.

Data availability statement

No new data was generated.

Funding information

No funding was received for this work.

REFERENCES

- 1. Karabag Yilmaz E, Cebi MN, Karahan I, Saygılı S, Gulmez R, Demirgan EB, Durak C, Aygun F, Ozaltin F, Caliskan S, Canpolat N. COVID-19 associated thrombotic microangiopathy. Nephrology (Carlton). 2023;28(10):557–60.
- Hanna RM, Henriksen K, Kalantar-Zadeh K, Ferrey A, Burwick R, Jhaveri KD. Thrombotic microangiopathy syndromes-common ground and distinct frontiers. Adv Chronic Kidney Dis. 2022;29(2):149–60. e1.
- Gavriilaki E, Anyfanti P, Gavriilaki M, Lazaridis A, Douma S, Gkaliagkousi E. Endothelial dysfunction in COVID-19: lessons learned from Coronaviruses. Curr Hypertens Rep. 2020;22(9):63.
- Song WC, FitzGerald GA. COVID-19, microangiopathy, hemostatic activation, and complement. J Clin Invest. 2020;130(8): 3950–3.
- Aigner C, Gaggl M, Schmidt S, Kain R, Kozakowski N, Oszwald A, Prohászka Z, Sunder-Plassmann R, Schmidt A, Sunder-Plassmann G. Complement-mediated thrombotic microangiopathy related to COVID-19 or SARS-CoV-2 vaccination. Kidney Int Rep. 2023;8(8):1506–13.
- 6. Pires BG, Calado RT. Hyper-inflammation and complement in COVID-19. Am J Hematol. 2023;98(Suppl 4):S74–81.
- Favaloro EJ, Henry BM, Lippi G. Increased VWF and decreased ADAMTS-13 in COVID-19: creating a milieu for (Micro)thrombosis. Semin Thromb Hemost. 2021;47(4):400–18.
- 8. Henry BM, Benoit SW, de Oliveira MHS, Lippi G, Favaloro EJ, Benoit JL. ADAMTS13 activity to von Willebrand factor antigen ratio predicts acute kidney injury in patients with COVID-19: evidence of SARS-CoV-2 induced secondary thrombotic microangiopathy. Int J Lab Hematol. 2021;43(Suppl 1):129–36.
- 9. Piedrafita A, Ribes D, Cointault O, Chauveau D, Faguer S, Huart A. Plasma exchange and thrombotic microangiopathies: from pathophysiology to clinical practice. Transfus Apher Sci. 2020;59(6):102990.
- Memish ZA, Faqihi F, Alharthy A, Alqahtani SA, Karakitsos D. Plasma exchange in the treatment of complex COVID-19related critical illness: controversies and perspectives. Int J Antimicrob Agents. 2021;57(2):106273.
- 11. Wang X, Sahu KK, Cerny J, Coagulopathy. endothelial dysfunction, thrombotic microangiopathy and complement

- activation: potential role of complement system inhibition in COVID-19. J Thromb Thrombolysis. 2021;51(3):657–62.
- 12. Beyerstedt S, Casaro EB, Rangel ÉB. COVID-19: angiotensinconverting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis. 2021;40(5):905–19.
- Bonaventura A, Vecchié A, Dagna L, Martinod K, Dixon DL, Van Tassell BW, Dentali F, Montecucco F, Massberg S, Levi M, Abbate A. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021;21(5):319–29.
- Zanza C, Romenskaya T, Manetti AC, Franceschi F, La Russa R, Bertozzi G, Maiese A, Savioli G, Volonnino G, Longhitano Y. Cytokine storm in COVID-19: immunopathogenesis and therapy. Medicina (Kaunas). 2022;58(2):144.
- 15. Afzali B, Noris M, Lambrecht BN, Kemper C. The state of complement in COVID-19. Nat Rev Immunol. 2022;22(2):77–84.
- Lo MW, Kemper C, Woodruff TM. COVID-19: complement, coagulation, and collateral damage. J Immunol. 2020 Sep 15;205(6):1488–95. https://doi.org/10.4049/jimmunol.2000644. Epub 2020 Jul 22. PMID: 32699160; PMCID: PMC7484432.
- 17. Seth R, McKinnon TAJ, Zhang XF. Contribution of the von Willebrand factor/ADAMTS13 imbalance to COVID-19 coagulopathy. Am J Physiol Heart Circ Physiol. 2022;322(1):H87–93.
- 18. Grobler C, Maphumulo SC, Grobbelaar LM, Bredenkamp JC, Laubscher GJ, Lourens PJ, Steenkamp J, Kell DB, Pretorius E. Covid-19: the rollercoaster of fibrin(Ogen), D-dimer, Von Willebrand factor, P-selectin and their interactions with endothelial cells. Platelets and Erythrocytes. Int J Mol Sci. 2020;21(14):5168.
- Thompson GL, Kavanagh D. Diagnosis and treatment of thrombotic microangiopathy. Int J Lab Hematol. 2022 Sep;44 (Suppl 1):101–13.
- Batah SS, Fabro AT. Pulmonary pathology of ARDS in COVID-19: a pathological review for clinicians. Respir Med. 2021;176:106239.
- Attaway AH, Scheraga RG, Bhimraj A, Biehl M, Hatipoğlu U. Severe covid-19 pneumonia: pathogenesis and clinical management. BMJ. 2021;372:n436.
- Gopika KM, Sivajith S, Sugunan A, Sudheesh MS. Therapeutic approaches for intravascular microthrombi-induced acute Respiratory distress syndrome (ARDS) in COVID-19 infection. Curr Pharm Biotechnol. 2023;24(8):970–87.
- 23. Valdebenito S, Bessis S, Annane D, Lorin de la Grandmaison G, Cramer-Bordé E, Prideaux B, Eugenin EA, Bomsel M. COVID-19 lung pathogenesis in SARS-CoV-2 autopsy cases. Front Immunol. 2021;12:735922.
- 24. Sharma P, Ng JH, Bijol V, Jhaveri KD, Wanchoo R. Pathology of COVID-19-associated acute kidney injury. Clin Kidney J. 2021;14(Suppl 1):i30–9.
- 25. El Sissy C, Saldman A, Zanetta G, Martins PV, Poulain C, Cauchois R, Kaplanski G, Venetz JP, Bobot M, Dobosziewicz H, Daniel L, Koubi M, Sadallah S, Rotman S, Mousson C, Pascual M, Frémeaux-Bacchi V, Fakhouri F. COVID-19 as a potential trigger of complement-mediated atypical HUS. Blood. 2021;138(18):1777–82.
- Legrand M, Bell S, Forni L, Joannidis M, Koyner JL, Liu K, Cantaluppi V. Pathophysiology of COVID-19-associated acute kidney injury. Nat Rev Nephrol. 2021;17(11):751–64.
- 27. Sabioni LR, Tibirica E, Lamas CC, Amorim GD, De Lorenzo A. Systemic microvascular dysfunction in COVID-19. Am J Cardiovasc Dis. 2020;10(4):386–91.
- 28. Sabioni LR, Tibirica E, Lamas CC, Amorim GD, De Lorenzo A. Systemic microvascular dysfunction in COVID-19. Am J Cardiovasc Dis. 2020;10(4):386–91.
- 29. Zhou S, Zhang A, Liao H, Liu Z, Yang F. Pathological interplay and clinical complications between COVID-19 and cardiovascular diseases: an overview in 2023. Cardiology. 2024;149 (1):60–70.

- 30. Ali FEM, Abd El-Aziz MK, Ali MM, Ghogar OM, Bakr AG. COVID-19 and hepatic injury: cellular and molecular mechanisms in diverse liver cells. World J Gastroenterol. 2023;29(3):425–49.
- 31. Barrantes FJ. The unfolding palette of COVID-19 multisystemic syndrome and its neurological manifestations. Brain Behav Immun Health. 2021;14:100251.
- 32. Tyagi SC, Singh M. Multi-organ damage by covid-19: congestive (cardio-pulmonary) heart failure, and blood-heart barrier leakage. Mol Cell Biochem. 2021;476(4):1891–5.
- 33. Al Otair H, AlSaleh K, AlQahtany FS, Al Ayed K, Al Ammar H, Al Mefgai N, Al Zeer F. The level of vWF antigen and coagulation markers in hospitalized patients with Covid-19. J Blood Med. 2021;12:809–17.
- 34. Weinstein R. Basic principles of therapeutic plasma exchange. Transfus Apher Sci. 2023 Apr;62(2):103675.
- Elkayam N, Raju G, Huang Y, Lipshitz J, Peeke S, Bluth MH. COVID-19-associated thrombotic angiopathy improved after plasma exchange. Clin Case Rep. 2021;9(11):e04991.
- Beraud M, Hashami SA, Lozano M, Bah A, Keith P. Role of therapeutic plasma exchange in the management of COVID-19-induced cytokine storm syndrome. Transfus Apher Sci. 2022;61(4):103433.
- 37. Bouayed MZ, Laaribi I, Benaini I, Yeznasni A, Berrajaa S, Oujidi Y, Bkiyar H, Abda N, Housni B. Therapeutic plasma exchange in the treatment of COVID-19 induced cytokine storm: the first Moroccan experience. BMC Infect Dis. 2023;23(1):829.
- 38. Sastry S, Cuomo F, Muthusamy J. COVID-19 and thrombosis: the role of hemodynamics. Thromb Res. 2022 Apr;212:51–7.
- Cervantes CE, Bloch EM, Sperati CJ. Therapeutic Plasma Exchange: core Curriculum 2023. Am J Kidney Dis. 2023;81 (4):475–92.
- 40. Fernández-Zarzoso M, Gómez-Seguí I, de la Rubia J. Therapeutic plasma exchange: review of current indications. Transfus Apher Sci. 2019;58(3):247–53.
- Elkayam N, Raju G, Huang Y, Lipshitz J, Peeke S, Bluth MH. COVID-19-associated thrombotic angiopathy improved after plasma exchange. Clin Case Rep. 2021;9(11):e04991.
- 42. Zhang L, Zhai H, Ma S, Chen J, Gao Y. Efficacy of therapeutic plasma exchange in severe COVID-19 patients. Br J Haematol. 2020;190(4):e181–3.
- 43. Shi H, Zhou C, He P, Huang S, Duan Y, Wang X, Lin K, Zhou C, Zhang X, Zha Y. Successful treatment with plasma exchange followed by intravenous immunoglobulin in a critically ill patient with COVID-19. Int J Antimicrob Agents. 2020;56 (2):105974.
- 44. Arulkumaran N, Thomas M, Brealey D, Alwan F, Singh D, Lunn M, Welch A, Clark S, Raith E, Reddy U, Low R, Leverett D, Singer M, Scully M. Plasma exchange for COVID-19 thrombo-inflammatory disease. EJHaem. 2020;2(1):26–32.
- 45. Masuda E, Fukushima K, Hebisawa Y, Tanaka M, Ohta A, Imamura A. Coronavirus disease 2019-associated thrombotic microangiopathy treated with plasma exchange and antihypertensive therapy in a patient with HIV: a case report with literature review. Medicine. 2023;102(41):e35469.
- 46. Malgaj Vrečko M, Aleš-Rigler A, Borštnar Š, Večerić-Haler Ž. Coronavirus Disease 2019-associated thrombotic microangiopathy: a single-center experience. Int J Mol Sci. 2024;25 (22):12475.
- 47. Kornowski Cohen M, Sheena L, Shafir Y, Yahalom V, Gafter-Gvili A, Spectre G. An early unexpected immune thrombotic thrombocytopenic purpura relapse associated with SARS-CoV-2 infection: a case report and literature review. Acta Haematol. 2021;144(6):678–82.
- 48. Tehrani HA, Darnahal M, Vaezi M, Haghighi S. COVID-19 associated thrombotic thrombocytopenic purpura (TTP); A case series and mini-review. Int Immunopharmacol. 2021;93: 107397.

www.htct.com.br

Case Report

An enigmatic tale of macrophages in bone marrow causing inflammation of the brain: A case report on CNS HLH

Ivy E. Verriet ^a, Jessica Liu ^a, Adrienne Fulford ^b, Uday Deotare ^{a,b,c,d,*}

- ^a Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- ^b Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, Canada
- ^c Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- ^d The Centre for Quality, Innovation and Safety, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada

ARTICLE INFO

Article history:
Received 20 May 2025
Accepted 22 May 2025
Available online 8 September 2025

Key words:
Allogeneic stem cell transplant
Central nervous system
Hemophagocytic
lymphohistocytosis
Case report

ABSTRACT

Background: Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening immune disorder characterized by excessive inflammation and multiorgan involvement. Rarely, HLH can manifest with signs and symptoms isolated to the central nervous system (CNS). This case report highlights the unique clinical course of CNS-isolated HLH in a 19-year-old female who, despite a nine-year delay in diagnosis, achieved disease remission following a hematopoietic stem cell transplant (HSCT).

Case: The patient initially presented at 9 years old with seizures, ataxia, and progressive cognitive decline. Over the next nine years, extensive diagnostic evaluations were performed, including neuroimaging, cerebrospinal fluid analysis, and genetic testing. Genetic testing identified a compound heterozygous mutation in the PRF1 gene, confirming a diagnosis of familial HLH (FHL). The patient underwent hematopoietic stem cell transplant (HSCT) from an HLA-matched unrelated donor. Despite significant complications, including multiple infections and renal failure, she achieved remission. Six years post-transplant, the patient exhibited stabilization of neurological function, cessation of seizures, and absence of active HLH.

Conclusion: This case underscores the importance of considering genetic testing in patients with unexplained CNS symptoms and atypical radiological findings. Timely HSCT, even in cases with delayed diagnosis, can lead to remission and improved quality of life.

Crown Copyright © 2025 Published by Elsevier España, S.L.U. on behalf of Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

E-mail address: uday.deotare@lhsc.on.ca (U. Deotare). https://doi.org/10.1016/j.htct.2025.103981

2531-1379/Crown Copyright © 2025 Published by Elsevier España, S.L.U. on behalf of Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^{*} Corresponding author: E6-215, 800, Commissioners Road East, London, ON, Canada.

London, ON, Canada.

The first of the control of the contr

disease. Familial HLH has been associated with mutations in four genes (PRF1, STX11, STXBP2, and UNC13D), which account for over 90 % of familial cases [1].

Diagnosis of HLH is currently based on the HLH-2004 criteria, which emphasizes systemic disease markers such as fever, splenomegaly and cytopenias [2,3]. Another frequent finding is central nervous system (CNS) involvement due to infiltration of activated lymphocytes and macrophages into the meninges and brain, which can present as seizures, encephalopathy, and cerebellar involvement on MRI [4]. From 30–73 % of patients with systemic HLH have CNS-HLH, but rarely patients will present with isolated CNS involvement [2,4].

Hematopoietic stem cell transplant (HSCT) is now recognized as the only curative option for HLH [3,5]. Numerous studies have demonstrated the effectiveness of HSCT in achieving long-term remission, however, delays in diagnosis, especially with CNS involvement, are associated with increased risk of relapse and poorer outcomes due to the cumulative irreversible CNS damage [3,4,6]. Few cases exist where HSCT has successfully cured CNS-isolated HLH years after initial presentation, with the longest documented period being seven years [7]. Here, we report a unique case of a 19-year-old girl with CNS-isolated HLH, successfully cured with HSCT nine years after symptom onset.

Case presentation

In March 2009, a previously healthy nine-year-old girl presented with progressive neurological symptoms, including headaches, vomiting, and dizziness, and was subsequently admitted to the hospital with sudden-onset confusion, blindness, and incoherent speech. She had an unremarkable perinatal history and no significant personal or familial medical history.

Initial investigations included serological and cerebral spinal fluid (CSF) testing for opportunistic and routine viral infections, all of which were negative. Magnetic resonance imaging (MRI) showed diffuse white matter abnormalities and T2 hyperintensity around the optic nerves. Based on the clinical and radiological findings, a diagnosis of optic neuritis secondary to acute demyelinating encephalomyelitis (ADEM) was made, and the patient was treated with intravenous corticosteroids. A lumbar puncture revealed an opening pressure of 28 mmHg,

necessitating the placement of an external ventricular drain, which was successfully removed after one week. The patient regained full vision and was clinically stable until May 2009, when she began to exhibit focal seizures and was started on clobazam. Over the next three months, her condition worsened, with gait disturbances, memory deterioration, and persistent focal seizures despite increasing doses of clobazam.

In early July, she was readmitted with encephalopathy, including a three-week history of increased lethargy, worsening memory, confusion, ataxia, and vomiting. MRI revealed new leptomeningeal enhancement with increased nodularity in the brain parenchyma. Two lumbar punctures performed during this hospitalization revealed only elevated protein (predominantly albumin) with a mild pleocytosis. All other investigations, including antinuclear antibody, oligoclonal banding, cryptococcal antigen testing, culture and cytology, testing were unremarkable. A repeat brain MRI just before discharge demonstrated significant improvement with the resolution of cortical lesions, although the patient continued to experience cognitive dysfunction and a wide-based gait.

In August 2009, a brain biopsy revealed T-cell lymphocytosis surrounding small vessels, leading to a diagnosis of small vessel vasculitis. The patient was treated with prednisone, mycophenolate mofetil (CellCept), cyclophosphamide, and acyclovir. Figure 1 shows the timeline of the patient's course over the next nine years, including multiple treatment modalities and relapses.

In March 2018, the patient underwent genetic testing which revealed a compound heterozygous mutation in the PRF1 gene, consistent with familial HLH. Further testing of her parents revealed the PRF1.886T>C (p.Tyr296His) mutation in her father, and the PRF1.481A>G (p.Lys161Glu) mutation in her mother. Given that the PRF.886T>C (p.Tyr296His) mutation was known to be pathogenic for HLH, she was referred for a potential curative HSCT.

In October 2018, the patient underwent an allogeneic HSCT from a 10/10 HLA-matched unrelated donor. A pre-transplant MRI was performed one month before transplant that found no enhancements to suggest any active disease (Figure 2). She underwent pre-transplant conditioning with fludarabine, treosulfan, and cytarabine (Cytarabine). Neutrophil and platelet engraftment took place 15 days post-transplant. Tacrolimus, rabbit anti-thymocyte globulin, methylprednisolone,

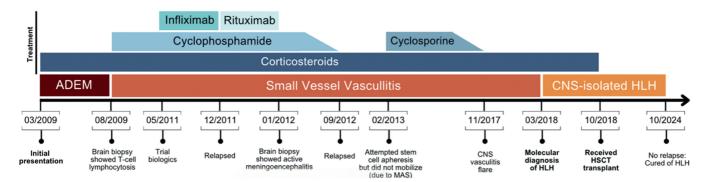


Figure 1 – Timeline of patient course (not to scale). Running diagnosis indicated in shades of orange, medications administered to patient indicated in shades of blue. Corticosteroids were administered PO or IV sporadically throughout the disease course. Notable events during disease progression are dated and detailed below the arrow.

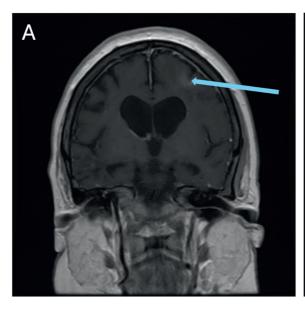


Figure 2 – Pre-transplant magnetic resonance images demonstrating low grade enhancement in the precentral gyrus of the left frontal lobe extending in deep aspects of cortex asymmetrically (A) and stippled enhancement in dorsal aspect of mid pons (B) on post-gadolinium images.

and methotrexate (Methotrexate) were given for graft-versushost disease (GvHD) prophylaxis. She developed acute GvHD (overall Grade I) of the skin and gut, which resolved with topical and systemic steroids. Chimerism 60 days post-transplant showed >95 % donor cells, and at 280 days post-transplant the patient demonstrated stable chimerism with CD3 donor cells at 97.4 %, CD19 at 98.9 %, and myeloid cells at 98 %, and remained at these levels thereafter.

Unfortunately, her post-transplant course was complicated by multiple infections including Epstein—Barr virus (EBV) viremia, varicella infection, and adenoviremia onemonth post-transplant. She also experienced acute kidney injury secondary to tacrolimus and cidofovir toxicity that progressed to acute-on-chronic renal failure due to sepsis requiring hemodialysis in March 2019, and eventually a related living donor kidney transplant in January 2023.

Despite these complications, her neurological symptoms significantly improved. She experienced two seizures within the first-year post-transplant but has since been seizure free. Despite ongoing dystonic movements (which predated her transplant) for which she is on trihexyphenidyl, her cognitive function has returned to baseline. MRI findings one-year post-transplant showed no active disease, and she has been deemed cured of HLH. She is now six years post-transplant and is doing well, with no recurrence of disease or neurological symptoms.

Discussion

Isolated CNS symptoms in the absence of systemic manifestations makes differentiating CNS-HLH from other CNS inflammatory diseases, such as ADEM, extremely challenging, as seen in this case. A study conducted by Deiva et al. compared radiological presentations of CNS-isolated HLH and

ADEM and found that while both may present with white matter hyperintensity on MRI, CNS-HLH often features symmetrical, periventricular lesions, whereas ADEM typically involves the brainstem [8]. Our patient had asymmetrical white matter lesions and brainstem involvement, demonstrating that additional studies are necessary to fully differentiate these conditions (Figure 2).

The challenges of diagnosing CNS-isolated HLH are further highlighted by Benson et al., who describe three cases of CNS-isolated HLH initially misdiagnosed as ADEM or small vessel vasculitis [7]. Similar to our case, the diagnosis was ultimately confirmed through genetic testing. This case, in addition to those of Benson et al., underscores the importance of prompt genetic testing in patients with unexplained neurological symptoms and abnormal neuroimaging which would allow for earlier initiation of curative interventions like HSCT.

Although HSCT is widely known to be curative for systemic HLH, its role in CNS-isolated HLH is less established [3]. Previous cases have shown that early HSCT can halt disease progression and offer a cure when performed soon after symptom onset [7,9,10]. Our patient was unique in that she underwent HSCT nine years after her initial symptom onset. Despite the delay, her post-transplant MRI findings showed no further disease activity, although existing lesions and some neurological symptoms remain unchanged. This aligns with reports emphasizing the irreversible nature of CNS damage when treatment is delayed. Nevertheless, at six years post-transplant, our patient exhibits no further disease progression and is now considered cured of her CNS-HLH. This suggests that HSCT can still offer significant benefits, even after prolonged disease progression.

In conclusion, genetic testing for HLH-associated mutations should be pursued in patients with refractory inflammatory CNS disease and neurological impairment, as timely HSCT can halt disease progression, improve quality of life

and provide curative outcomes, even after years of ongoing symptoms

Ethics approval and consent to participate

Ethics approval is not required at our institution for individual cases or case series.

Consent for publication

Verbal, informed and written consent was obtained from the patient through a legally authorized representative for anonymized patient information.

Availability of data and materials

The authors confirm that the data generated and analyzed in this study are included in this published article.

Clinical trial number

Not applicable

Authors' contributions

IEV collected the raw patient data and wrote the manuscript. JL also collected patient data, designed the study and contributed to writing and editing the manuscript. AF provided guidance and obtained patient consent. UD designed the study and contributed to writing and editing of the manuscript with overall supervision. All authors read and approved the final manuscript

MAS: macrophage activation syndrome; ADEM: acute demyelinating encephalomyelitis; HSCT: Hematopoietic stem cell transplant

Funding

The authors did not receive any financial support for the purpose of this case report.

Conflicts of interest

The authors do not have any competing interests to declare.

Acknowledgements

We would like to thank the resident physicians leading the Oncology Research Internship program in the Radiation Oncology department at the London Regional Cancer Program for setting up this project.

REFERENCES

- 1. Bode SF, Lehmberg K, Maul-Pavicic A, Vraetz T, Janka G, Stadt UZ, et al. Recent advances in the diagnosis and treatment of hemophagocytic lymphohistiocytosis. Arthritis Res Ther. 2013;14:213. https://doi.org/10.1186/ar3843.
- Henter JI, Horne A, Aricó M, Egeler RM, Filipovich AH, Imashuku S, et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatric blood & cancer. 2007;48:2:124–131. https://doi.org/10.1002/pbc.21039
- Bergsten E, Horne A, Hed Myrberg I, Aricó M, Astigarraga I, Ishii E, et al. Stem cell transplantation for children with hemophagocytic lymphohistiocytosis: results from the HLH-2004 study. Blood advances. 2020;4(15):3754–66. https://doi.org/ 10.1182/bloodadvances.2020002101.
- 4. Horne A, Wickström R, Jordan MB, Yeh EA, Naqvi A, Henter JI, et al. How to treat involvement of the Central nervous system in hemophagocytic lymphohisticocytosis? Curr Treat Options Neurol. 2017;19(1):3. https://doi.org/10.1007/s11940-017-0439-4.
- Fischer A, Cerf-Bensussan N, Blanche S, Le Deist F, Bremard-Oury C, Leverger G, et al. Allogeneic bone marrow transplantation for erythrophagocytic lymphohistiocytosis. J. Pediatr. 1986;108(2):267–70. https://doi.org/10.1016/s0022-3476(86) 81002-2
- Ouachée-Chardin M, Elie C, de Saint Basile G, Le Deist F, Mahlaoui N, Picard C, et al. Hematopoietic stem cell transplantation in hemophagocytic lymphohistiocytosis: a single-center report of 48 patients. Pediatrics. 2006;117(4):743–50. https:// doi.org/10.1542/peds.2005-1789.
- 7. Benson LA, Li H, Henderson LA, Solomon IH, Soldatos A, Murphy J, et al. Pediatric CNS-isolated hemophagocytic lymphohistiocytosis. Neurol Neuroimmunol Neuroinflamm. 2019;6 (3):560. https://doi.org/10.1212/NXI.000000000000560.
- Deiva K, Mahlaoui N, Beaudonnet F, de Saint, Basile G, Caridade G, Moshous D, et al. CNS involvement at the onset of primary hemophagocytic lymphohistiocytosis. Neurology. 2012;78(15):1150-6. https://doi.org/10.1212/WNL.0b013e31824f800a.
- Li H, Benson LA, Henderson LA, Solomon IH, Kennedy AL, Soldatos A, et al. Central nervous system-restricted familial hemophagocytic lymphohisticocytosis responds to hematopoietic cell transplantation. Blood advances. 2019;3(4):503–7. https://doi.org/10.1182/bloodadvances.2018027417.
- Khazal S, Polishchuk V, Soffer G, Prinzing S, Gill J, Mahadeo KM. Allogeneic hematopoietic stem cell transplantation is associated with cure and durable remission of late-onset primary isolated central nervous system hemophagocytic lymphohistiocytosis. Pediatr Transplant. 2018;22(1). https://doi.org/10.1111/petr.13101.

www.htct.com.br

Case Report

Daratumumab-EPOCH for transformed anaplastic multiple myeloma

Espen Stormorken a, Anders Erik Astrup Dahm a, Anders Erik Astrup

^a Department of Haematology, Akershus University Hospital, Lørenskog, Norway

ARTICLE INFO

Article history:
Received 4 March 2025
Accepted 20 March 2025
Available online 6 September 2025

Introduction

Anaplastic multiple myeloma is not an established diagnostic entity but is described many times and has distinct histopathological features. It is associated with poor prognosis, high Ki67, rapid growth, and extramedullary myelomas. It can debut as the first symptom of multiple myeloma (primary anaplastic myeloma) or transform from an existing myeloma. Anaplastic transformation of multiple myeloma is typically associated with a survival of only a few months [1,2]. Myeloma treatments are mainly based on dexamethasone, proteasome inhibitors, immunomodulatory drugs, and CD 38 antibodies [3]. Traditional cytotoxic drugs are nowadays rarely used, except melphalan, mostly together with autologous stem-cell transplantation (ASCT). There have been reported cases where primary anaplastic multiple myeloma has responded well to the EPOCH regimen used for lymphoma [4]. There are, however, no reports of successful treatment of transformed anaplastic multiple myeloma. Here we present two heavily treated myeloma patients who had an anaplastic

E-mail address: aeadahm@gmail.com (A.E.A. Dahm). https://doi.org/10.1016/j.htct.2025.103977

transformation of their disease. They received a combination of modern myeloma treatment with traditional lymphoma treatment with surprisingly good results.

Case report

Case 1 involved a 64-year-old woman diagnosed in 2015 with multiple myeloma, characterized by an IgG monoclonal protein (Table 1). She had been diagnosed with a monoclonal gammopathy of undetermined significance four years earlier. Her past medical history included rheumatoid arthritis, hypertension, ovarian cancer, herpes zoster, and sclerotic aortic and mitral valves. First line treatment was induction therapy followed by high-dose melphalan with ASCT. Three years later she had a biochemical recurrence. Second-line treatment was a second induction and high-dose melphalan with ASCT followed by maintenance therapy with lenalidomide and dexamethasone (Rd - Table 1). In December 2021 she was diagnosed with transformed anaplastic multiple myeloma (Table 2). She experienced persistent high fever with deteriorating general condition. She received four cycles of daratumumab, carfilzomib, and dexamethasone with a reduction of plasma cells in the bone marrow from 70 % to 40 %, but the fever remained. Four months later, a biopsy

^b Institute of Clinical Medicine, University of Oslo, Oslo, Norway

^{*} Corresponding author. Institute of Clinical Medicine, University of Oslo, Oslo, Norway

Table 1 – Baseline patient and disease features at multiple myeloma diagnosis.						
	Case 1	Case 2				
Sex	Female	Female				
Age at multiple myeloma diagnosis	64 years	61 years				
Characteristics of the myeloma	Monoclonal IgG protein 41 g/L, 30 % plasma cells in the bone marrow. Anaemia, hypercalcaemia, and skeletal involvement.	Non-secretory myeloma, 90 % plasma cells, hypercalcaemia, renal failure and osteolytic skeletal lesions.				
ISS	III	II				
Cytogenetics	Small extra marker chromosome	t(11;14)(q13;q32)				
1st line treatment	VCd x 4, HDM with ASCT	VCd x 2, VTd x 2, VRd x 2, HDM with ASCT				
2nd line treatment	VRd x 4 + HDM with ASCT + 27 x Rd maintenance therapy.	RT, Vd x 1, PomVD x 5, HDM with ASCT, 7 x DaraVd maintenance therapy				

VCd: bortezomib, cyclophosphamide, dexamethasone; VRd: bortezomib, lenalidomide, dexamethasone; VTd: bortezomib, thalidomide, dexamethasone; HDM: high-dose melphalan; RT: radiotherapy; PomVd: pomalidomide, bortezomib, dexamethasone; DaraVd: daratumumab, bortezomib, dexamethasone.

Table 2 – Treatment given after anaplastic transformation and survival.					
	Case 1	Case 2			
Characteristics of anaplastic transformation	70 % plasma cells in the bone marrow, mono- clonal protein IgG of 19 g/L, Ki67 of 100 %, the plasma cells positive for c-MYC protein.	Extramedullary disease, Ki67>60 %, C-Myc protein positive and cyclin D1 positive. Normal bone marrow biopsy.			
Age at anaplastic transformation	70 years	66 years			
Cytogenetics	Loss of 17p13	Normal			
1st line treatment after anaplastic transformation	Dara-Kd	Dara-EPOCH			
2nd line treatment after anaplastic transformation	Dara-EPOCH	Daratumumab maintenance therapy			
3rd line treatment after anaplastic transformation	Daratumumab maintenance therapy	Dara-modified POMP			
4th line treatment after anaplastic transformation	Dara-modified POMP	Belantamab mafodotin			
5th line treatment after anaplastic transformation	Belantamab mafodotin	Talquetamab			
6th line treatment after anaplastic transformation	Carfilzomib EPOCH	Isa-Kd-IME			
Survival after anaplastic transformation	19 months	26 months			
Overall survival after multiple myeloma diagnosis	7 years 9 months	8 years			

Dara-Kd: daratumumab, carfilzomib, dexamethasone; Dara-EPOCH: daratumumab, etoposide, prednisolone, vincristine, cyclophosphamide, doxorubicin; Dara-modified POMP: daratumumab, dexamethasone, vinblastine, mercaptopurine, methotrexate; Isa-Kd-IME: isatuximab, carfilzomib, dexamethasone, ifosfamide, methotrexate, etoposide.

from an axillary lymph node confirmed anaplastic multiple myeloma. The EPOCH chemotherapy regimen traditionally used for aggressive lymphomas had been tried previously for anaplastic myeloma [4,5]. We therefore decided to give her daratumumab together with EPOCH, i.e., continuous infusion of etoposide 100 mg/m² Day 1–4, prednisolone 60 mg/m² Day 1–5, vincristine 0.8 mg/m² on Day 1–4, doxorubicin 20 mg/m² Day 1–5, and cyclophosphamide 750 mg/m² Day 5 (Dara-EPOCH). Daratumumab was administered weekly, and EPOCH was administered every third week. She received five cycles of Dara-EPOCH, the last cycle in July 2022. In November 2022 there were 0.5 % plasma cells in the bone marrow and the monoclonal component was zero. A positron emission tomography-computed tomography (PET-CT) scan identified residual lesions in the left iliac bone and a left rib.

Radiotherapy for these lesions was initiated in November 2022. At the same time, maintenance treatment was started with daratumumab weekly. That winter she sent us a picture where she went cross-country skiing.

In January 2023 the monoclonal protein increased and we started treatment based on the POMP regimen [6] with vinblastine every fourth week, dexamethasone Day 1–5 of each 28 day cycle, together with daily oral mercaptopurine and weekly oral methotrexate in addition to the weekly daratumumab with dexamethasone she was already receiving (Dara-modified POMP). In May 2023 she had increased skeletal lesions and was administered two doses of the antibody-drug conjugate belantamab mafodotin. A lesion at the right orbit was treated with radiotherapy in July 2023. The disease continued to progress evidenced by extramedullary lesions and

following discussion with the patient we decided to give a new EPOCH cycle with carfilzomib. She died due to febrile neutropenia in late July 2023.

Case 2 was a 61-year-old woman diagnosed with non-secretory multiple myeloma in 2016. She received induction treatment and high-dose melphalan with ASCT (Table 1). She started Rd as maintenance treatment, but developed a rash and the treatment was discontinued. Five years later she was admitted to hospital with malignant spinal cord compression. She was treated with radiotherapy followed by subsequent induction and a second high-dose melphalan with ASCT. A response assessment PET-CT showed a lesion in the left femur. She then received seven cycles of daratumumab-bortezomibdexamethasone (Table 1). Six months later, in March 2022, the disease recurred with tumours in the left pleura, behind the aorta, and a skeletal lesion in L1. A biopsy showed anaplastic multiple myeloma (Table 2). She received two cycles of EPOCH, and four cycles of Dara-EPOCH. A PET-CT in October 2022, six months after the first EPOCH cycle, demonstrated almost complete remission with a residual lesion in the left femur. She then started weekly daratumumab and the residual lesion in the left femur was treated with radiotherapy.

In January 2023 the treatment was shifted to Dara-modified POMPIn May 2023, a PET-CT revealed progressive disease with bilateral rib involvement, multifocal lesions in all four extremities, and paravertebral tumors. Treatment was changed to belantamab mafodotin which was discontinued after two doses due to keratopathy. In August, the treatment was changed to talquetamab, a bispecific antibody that induces apoptosis of myeloma cells by means of T-cell recruitment and activation [7]. She received 40 mg subcutaneous every 14th day, and the disease stabilized until November 2023 when she was readmitted to the hospital with increasing pain. A PET-CT showed increased size of the myeloma lesions. Treatment was shifted to a 28-day cycle of isatuximab Day 1 and 15, carfilzomib Day 1, 8 and 15, ifosfamide 1000 mg/ m² Day 1–5, etoposide (Etoposide) 100 mg/m² Day 1–3, methotrexate (Methotrexate) 30 mg/m² Day 3 with dexamethasone and mesna (Mesna) resulting in effective pain control. A PET-CT in February 2024 showed regression of the myeloma lesions. In April 2024 the chemotherapy no longer provided pain relief. A subsequent PET-CT showed recurrence of the lesions from December 2023. She was transitioned to palliative care and died in May 2024.

Discussion

These two case reports illustrate that conventional chemotherapy used for aggressive lymphomas combined with anti-myeloma treatment is efficient in the treatment of transformed anaplastic multiple myeloma. The expected survival of patients with transformed anaplastic myeloma is only a few months. In contrast, these two patients lived for 19 and 26 months with a reasonably good quality of life. Most published cases of anaplastic myeloma are from patients who debut with anaplastic myeloma [1,4,8]. Although transformed anaplastic myeloma is a well-known aggressive end stage of myeloma,² we only found one publication reporting on the treatment of two such cases [1]. One of the two cases received thalidomide,

vincristine, doxorubicin, dexamethasone (Thal-VAD) and lived for three months. The other received one cycle of bortezomib, cisplatin, cyclophosphamide, etoposide, dexamethasone followed by five cycles of Thal-VAD with at least nine months survival. Previous studies have shown good outcomes with EPOCH (without daratumumab) in patients with anaplastic myeloma at diagnosis, thus guiding its application in our two cases [4,9]. Others have tried more standard myeloma treatment with and without effect [8,10].

A possible reason for the effect of the EPOCH regimen might be that anaplastic myeloma, in contrast to regular myeloma, is a rapidly growing malignancy. Hence, more myeloma cells are in a cell cycle state where they are vulnerable to conventional chemotherapy. We do not know if the addition of daratumumab/isatuximab or carfilzomib to the lymphoma regimens was beneficial or not, but it certainly was tolerable. In both patients, we continued treatment combining traditional lymphoma treatments with myeloma treatment to mitigate the recurrence of the myeloma.

We suggest that EPOCH combined with other less cytotoxic myeloma drugs, such as anti-CD38 antibodies or proteasome inhibitors, is a possible option for anaplastic myeloma, and perhaps also for other rapid growing variants of multiple myeloma, e.g., plasma cell leukaemia. A possible way forward for aggressive myelomas could be to use Dara-EPOCH to bring the patient in remission, followed by bi-specific antibodies such as talquetamab as maintenance therapy.

Author contribution

ES treated the patients, collected data, and Writing - review & editing. AD treated the patients, collected data and wrote the first draft of the manuscript.

Data availability

Not applicable.

Conflicts of interest

Stormorken: No conflicts of interest.

Dahm: Honoraria lecturer of Pfizer, Novartis, Bayer, Bristol Myers Squibb. Honoraria consultant of Pfizer, Bristol Myers Squibb, MSD, Jazz Pharmaceuticals, Abbvie.

Acknowledgements

This work received no funding.

REFERENCES

 Huang JX, Meng FJ, Feng XQ, Lyu X, Wang X. Clinical and histopathological analyses of anaplastic myeloma. Chin Med J (Engl). 2020;133(13):1614-6. https://doi.org/10.1097/ cm9.000000000000000902. (In eng).

- 2. Allen SL, Coleman M. Aggressive phase multiple myeloma: a terminal anaplastic transformation resembling high-grade lymphoma. Cancer Invest. 1990;8(3–4):417–24. https://doi.org/10.3109/07357909009012059. (In eng).
- 3. Dimopoulos MA, Moreau P, Terpos E, et al. Multiple myeloma: EHA-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up(†). Annal Oncology. 2021;32(3):309–22. https://doi.org/10.1016/j.annonc.2020.11.014. (In eng).
- 4. Ichikawa S, Fukuhara N, Hatta S, et al. Anaplastic multiple myeloma: possible limitations of conventional chemotherapy for long-term remission. J Clin Exp Hematop. 2018;58(1):39–42. https://doi.org/10.3960/jslrt.17035. (In eng).
- 5. Wilson WH, Bryant G, Bates S, et al. EPOCH chemotherapy: toxicity and efficacy in relapsed and refractory non-Hodgkin's lymphoma. J Clin Oncol. 1993;11(8):1573–82. https://doi.org/10.1200/jco.1993.11.8.1573. (In eng).
- Rodriguez V, Hart JS, Freireich EJ, et al. Pomp combination chemotherapy of adult acute leukemia. Cancer. 1973;32

- (1):69-75. https://doi.org/10.1002/1097-0142(197307)32:1<69:: aid-cncr2820320109>3.0.co;2-0. (In eng).
- Chari A, Minnema MC, Berdeja JG, et al. Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma.
 N. Engl. J. Med. 2022;387(24):2232–44. https://doi.org/10.1056/NEJMoa2204591. (In eng).
- 8. Tang W, Xu Y, Xiang B. Successful outcome of anaplastic multiple myeloma with lenalidomide, cyclophosphamide, and dexamethasone therapy. Ann Hematol. 2021;100(12):3039–40. https://doi.org/10.1007/s00277-020-04244-7. (In eng).
- 9. Ichikawa S, Fukuhara N, Hashimoto K, Fujishima F, Ichinohasama R, Harigae H. Anaplastic multiple myeloma with MYC rearrangement. Leuk Res Rep. 2022;17:100288. https://doi.org/10.1016/j.lrr.2021.100288. (In eng).
- 10. Demircioglu S, Tekinalp A, Ceneli O. Anaplastic multiple myeloma with multiple genetic anomalies. J Coll Physic Surg Pak. 2022;32(1):132–3. https://doi.org/10.29271/jcpsp.2022.01.132. (In engIn eng).

www.htct.com.br

Letter to the Editor

The battle against pediatric retinoblastoma: insights from 2024 medical literature

This literature review, based on 2024 peer-reviewed publications from the National Library of Medicine, provides a concise overview of retinoblastoma, a pediatric cancer that necessitates multidisciplinary care. The primary objectives of treatment are to preserve life and vision [1]. Extraocular retinoblastoma can likely be cured with systemic chemotherapy and radiation therapy. In contrast, extra-orbital disease demands intensive chemotherapy, potentially consolidated with high-dose chemotherapy and autologous hematopoietic stem cell rescue, with or without radiation therapy [1]. Retinoblastoma, although relatively uncommon and accounting for about 3% of cancers in children under 15 years, is a significant concern [1]. It originates from the retina and may grow under the retina or towards the vitreous cavity. Most patients present with leukocoria, often first noticed after a flash photograph is taken. Screening guidelines have been established for children at risk of developing retinoblastoma [1].

As the most common pediatric ocular malignancy, retino-blastoma is typically caused by a mutation in the RB1 gene or MYCN oncogene amplification [2]. The disease can be unilateral (60%–70%) or bilateral (30%–40%), with hereditary cases being bilateral and appearing earlier than unilateral ones, especially in India. Outcomes in developing countries are worse due to high prevalence, delayed presentation, and healthcare inaccessibility. Treatment has evolved from enucleation and radiotherapy to less aggressive eye salvage modalities. Multimodality treatment, including chemotherapy and focal consolidation therapies, is now standard. Genetic testing, counseling, and screening are essential, with advances in genetics paving the way for potential targeted therapy [2].

Addressing RB1-deficient cancers presents a challenge. Dysfunctional or deleted RB1 can enhance cancer proliferation and spread [3]. Scientists are striving to understand the role of RB1 in various biological processes and molecular pathways to develop innovative therapies for RB1-deficient cancers. Recent advancements have shown promising strategies for combating these cancers, leading to more precise and effective treatments. They emphasized the crucial role of RB1 in cancer research and its potential for personalized

therapies. RB1, a critical tumor suppressor gene, plays a significant role in cell cycle control and DNA repair mechanisms, restraining abnormal cell growth and maintaining genomic stability. Understanding the complex interactions of RB1 with cellular pathways is key to developing targeted therapies [3].

Retinoblastoma, a prevalent pediatric vision-threatening condition, has traditionally been treated with conventional therapies like systemic chemotherapy and focal therapy [4]. However, the quest for tumor eradication with minimal impact on surrounding tissues continues. Researchers explored the genetic origin, classification, and treatment modalities with their combination with nano-scale delivery systems for tumor targeting. They also discussed ongoing clinical trials, patents, and emerging therapies like gene therapy and immunotherapy. Understanding genetics in retinoblastoma development has refined treatment strategies. The novel approaches discussed here could overcome limitations of conventional therapy, thereby improving retinoblastoma treatment outcomes [4].

Balaji et al. reported that retinoblastoma is a pediatric eye cancer occurring in 1/15000 live births [5]. Initiated by RB1 gene inactivation, its progression relies on transcriptional changes. This study used RT2 Profiler™ PCR array to analyze 84 cancerspecific genes, identifying 68 dysregulated genes. Key alterations were validated by real time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot, revealing potential therapeutic targets. Polymerase chain reaction (PCR) arrays are suggested for rapid, cost-effective gene expression analysis in retinoblastoma [5].

Cobrinik et al. reported that retinoblastoma is a childhood retinal cancer affecting six out of 100,000 live births, with 250 –300 new cases annually in the U.S. and 8000 worldwide [6]. Early detection often leads to a cure, with advanced cases posing clinical challenges. Initiated by RB1 gene inactivation, recent studies have identified the cell of origin and genomic changes linked to treatment resistance. This understanding may improve therapies and prevention for genetically predisposed children [6].

Zhou et al. states that retinoblastoma, a primary ocular malignancy in children that without prompt treatment poses

a significant mortality risk [7]. Survival and vision preservation depend on disease severity at diagnosis. Initiated by RB1 gene mutations, tumorigenesis involves genetic and epigenetic changes. The RB1 gene encodes a protein crucial for cell replication control. Diagnosis and treatment consider disease stage, germline mutation status, psychosocial factors, and institutional resources, enhancing care quality for this pediatric cancer [7].

Singh et al. concluded that retinoblastoma is the most common childhood intraocular tumor, caused by RB1 gene mutations on chromosome 13 [8]. Annually, 8000 children are diagnosed globally, with 1500 cases in India. Survival rates exceed 90% in developed countries. Leukocoria and proptosis are common in Asian Indian populations. Diagnosis involves fundus examination and ultrasound. Prenatal and genetic testing benefit high-risk families. Histopathologic risk factors predict metastasis, requiring aggressive treatment for advanced cases [8].

Rabelo et al. reported that retinoblastoma, the most common childhood intraocular tumor, faces diagnostic and treatment challenges, especially in low- and middle-income countries [9]. Improving time to diagnosis and treatment access is crucial. A systematic review identified 21 studies with potential interventions, categorized into surveillance, genetic counseling, education, public assistance, and international partnership. These initiatives aim to enhance diagnosis and treatment access, proposing a comprehensive chain of initiatives to improve clinical outcomes for retinoblastoma patients [9].

The literature review provides a comprehensive overview of retinoblastoma, a significant pediatric cancer requiring multidisciplinary care. It emphasizes the primary treatment objectives of preserving life and vision, discussing various modalities such as systemic chemotherapy, radiation therapy, high-dose chemotherapy, and autologous hematopoietic stem cell rescue. The review delves into the genetic causes, particularly RB1 gene mutations and MYCN oncogene amplification, and highlights the challenges faced in developing countries due to high prevalence, delayed presentation, and healthcare inaccessibility. It notes the evolution of treatment from enucleation and radiotherapy to less aggressive eye salvage modalities and multimodality treatment, stressing the importance of genetic testing, counseling, and screening. The review also addresses the challenges of RB1-deficient cancers and ongoing research to develop innovative therapies, including gene therapy, immunotherapy, and nano-scale delivery systems. Additionally, it mentions ongoing clinical trials and patents, diagnostic and treatment challenges, especially in low- and middle-income countries, and suggests potential interventions to improve clinical outcomes. Overall, the review provides an up-to-date understanding of retinoblastoma, its genetic basis, treatment options, and research efforts to enhance patient outcomes.

Author contribution

Yoshiyasu Takefuji completed this research and wrote this article.

Conflicts of interest

The author declares no conflicts of interest.

REFERENCES

- 1. PDQ Pediatric Treatment Editorial Board. Retinoblastoma Treatment (PDQ®): Health Professional Version. In: PDQ Cancer Information Summaries. Bethesda (MD): National Cancer Institute (US); 2002. Available from: https://www.ncbi.nlm.nih.gov/books/NBK66006/. Accessed August 1, 2025.
- Nag A, Khetan V. Retinoblastoma a comprehensive review, update and recent advances. Indian J Ophthalmol. 2024;72 (6):778–88. https://doi.org/10.4103/IJO.IJO_2414_23.
- Huang MF, Wang YX, Chou YT, Lee DF. Therapeutic strategies for RB1-deficient cancers: intersecting gene regulation and targeted therapy. Cancers (Basel). 2024;16(8):1558. https://doi.org/ 10.3390/cancers16081558.
- 4. Pareek A, Kumar D, Pareek A, Gupta MM, Jeandet P, Ratan Y, et al. Retinoblastoma: an update on genetic origin, classification, conventional to next-generation treatment strategies. Heliyon. 2024;10(12):e32844. https://doi.org/10.1016/j.heliyon.2024.e32844.
- 5. Balaji S, Rao A, Saraswathi KK, Nagarajan RS, Santhi R, Kim U, et al. Focused cancer pathway analysis revealed unique therapeutic targets in retinoblastoma. Med Oncol. 2024;41(7):168. https://doi.org/10.1007/s12032-024-02391-9.
- Cobrinik D. Retinoblastoma origins and destinations. N Engl J Med. 2024;390(15):1408–19. https://doi.org/10.1056/NEJMra1803083.
- 7. Zhou M, Tang J, Fan J, Wen X, Shen J, Jia R, et al. Recent progress in retinoblastoma: pathogenesis, presentation, diagnosis and management. Asia Pac J Ophthalmol (Phila). 2024;13(2):100058. https://doi.org/10.1016/j.apjo.2024.100058.
- 8. Singh L, Chinnaswamy G, Meel R, Radhakrishnan V, Madan R, Kulkarni S, et al. Epidemiology, diagnosis and genetics of retinoblastoma: ICMR Consensus Guidelines. Indian J Pediatr. 2024. https://doi.org/10.1007/s12098-024-05085-2.
- Rabelo BS, de Alvarenga KAF, Fernando Lopes L, Guimarães Ribeiro A, de Sá Rodrigues KE. Strategies to improve diagnosis and access to treatment of retinoblastoma in low- and middleincome countries: a systematic review. Pediatr Blood Cancer. 2024;71(7):e30987. https://doi.org/10.1002/pbc.30987.

Yoshiyasu Takefuji 🔘 *

Faculty of Data Science, Musashino University, Tokyo, Japan

*Corresponding author at: Faculty of Data Science, Musashino University, 3-3-3 Ariake Koto-ku, Tokyo 135-8181, Japan E-mail address: takefuji@keio.jp

Received 13 November 2024 Accepted 2 December 2024 Available online 8 August 2025

https://doi.org/10.1016/j.htct.2025.103839 2531-1379/

© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

www.htct.com.br

Letter to the Editor

Electroacupuncture as a tool to stimulate bone marrow megakaryocytes in mice: A pilot study

Dear Editor,

We report the first evidence that electroacupuncture stimulates megakaryocyte production in the bone marrow (BM) of mice, offering a novel approach to support megakaryopoiesis and improve animal research.

Platelets, derived from megakaryocytes, are critical not only for hemostasis but also for vascular integrity, inflammation, pathogen defense, and tissue repair. They orchestrate innate and adaptive immune responses by expressing Toll-like receptors, activating leukocytes, releasing defensins, and engaging the complement system [1,2]. Enhancing platelet production is particularly important in thrombocytopenia and BM suppression [2,3].

In mouse models, BM sampling typically involves euthanasia and femur dissection, limiting longitudinal evaluations and conflicting with the 3Rs principles (replacement, reduction and refinement) [4-6]. We aimed to test whether electroacupuncture, a modern adaptation of Traditional Chinese Medicine, stimulates megakaryocyte production and to validate a minimally invasive iliac crest aspiration technique that permits repeated sampling in the same animal. We studied 30 six-month-old male BALB/c mice (15-22 g), housed individually under controlled conditions (20 °C, 12/12-h lightdark cycle, 70 % humidity, ad libitum food and water). Mice were randomized into three groups (n = 10 each): control electroacupuncture-treated (Electroacupuncture group), and sham electroacupuncture-treated (Sham group). Electroacupuncture was applied at large intestine (LI)-4 and LI-11, bladder (BL)-12 and BL-13, governing vessel (GV)-14 and GV-20 acupoints using sterile stainless-steel needles (0.16 mm \times 9 mm, 0.18 mm \times 8 mm; DUX[®], Brazil). Treatments were performed under general anesthesia, using alternating currents (2 Hz/50 Hz) with 10s/30 s stimulation cycles and 5 s breaks at 2.0 mA, for 45 min, repeated over two weeks. Animals of the Sham group received identical stimulation at non-meridian points. Treatments were conducted by a veterinary acupuncture specialist (Figure 1). BM aspiration was performed under anesthesia on Days 0 and 44 by exposing the

iliac crest through a 0.5 cm skin incision and aspirating up to 0.5 % of body weight. Postoperative care included monitoring and analgesia. BM smears were stained with May-Grünwald-Giemsa, and megakaryocyte counts were analyzed histologically. Statistical comparisons were conducted using the Mann-Whitney U and Wilcoxon tests (GraphPad Prism 9.4.1; p-value <0.05). Ethics approval was granted by the Pontificia Universidade Católica do Paraná Animal Ethics Committee (registration 1247).

We completed 60 BM collections (two per animal). Mean weights were 22.0 \pm 3.5 g at first and 26.0 \pm 2.7 g at second collection point (p-value = 0.164). Anesthesia induction averaged 4.0 \pm 0.89 min, aspiration 12.0 \pm 3.82 min, and recovery 75.0 ± 24.0 min. No adverse events were noted; three animals discontinued electroacupuncture two minutes early. No postoperative medications beyond standard care were needed, and sutures were removed after seven days without infection or self-injury. Histological evaluation confirmed the presence of myeloid and erythroid precursors and megakaryocytes (Figure 2). Megakaryocyte counts significantly increased in the electroacupuncture group between first and second aspirations (p-value = 0.040) and were significantly higher than controls at the second timepoint (pvalue = 0.040). The Sham group showed no significant changes (Figure 2).

These initial findings indicate that electroacupuncture stimulates megakaryocyte production in vivo. The experimental design reduced animal use by allowing paired comparisons over time, supporting the 3Rs principles. The iliac crest aspiration method was effective, minimally invasive, and allowed full recovery, making it suitable for longitudinal studies.

Megakaryopoiesis is regulated by thrombopoietin (TPO), a liver-derived cytokine that promotes megakaryocyte differentiation from hematopoietic stem cells and drives platelet production [2]. While we did not measure TPO levels, it is plausible that electroacupuncture may enhance megakaryocyte production by modulating the TPO pathway, which should be evaluated in future studies.

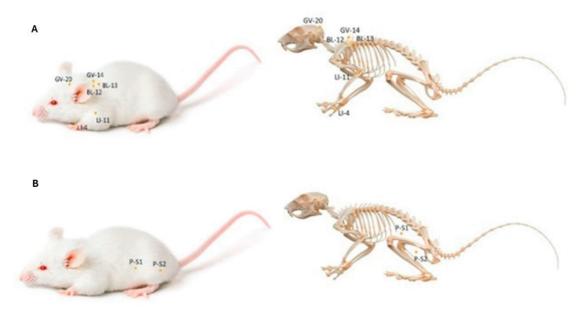


Figure 1-Locations of electroacupuncture and sham electroacupuncture points in BALB/c mice. A) Electroacupuncture points: LI-4 (between the first and second metacarpal bones), LI-11 (lateral to the elbow crease), BL-12 and BL-13 (paraspinal region, at thoracic vertebral levels), GV-14 (between the spinous processes of C7 and T1), and GV-20 (at the midline of the skull). B) Sham electroacupuncture points: P-S1 (lateral abdomen, on the transverse abdominal muscle at the level of the 11th rib) and P-S2 (lateral hindlimb, on the gastrocnemius muscle, proximal to the lateral saphenous vein).

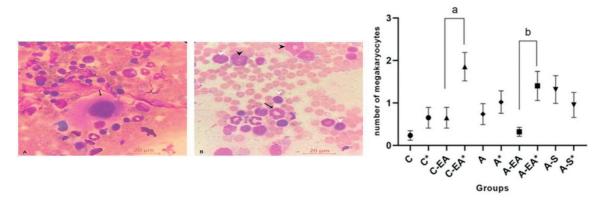


Figure 2 – Bone marrow samples from BALB/c mice stained with May-Grünwald-Giemsa. (A) Bone marrow smear showing myeloid and erythroid precursors; a megakaryocyte is indicated by the arrow (\times 1000). (B) Bone marrow aspirate highlighting multiple megakaryocytes indicated by arrows (\times 100). The graph shows the effect of electroacupuncture on megakaryocyte counts in bone marrow at baseline and after treatment. *Second bone marrow aspiration. A significant increase in megakaryocyte numbers was observed in the electroacupuncture group at the second aspiration. (C) Control group; EA: Electroacupuncture group; SEA: Sham electroacupuncture group.

We believe electroacupuncture could emerge as a novel supportive strategy in clinical contexts such as chemotherapy-induced thrombocytopenia or BM failure. Prior studies show that acupuncture influences neuroendocrine and inflammatory pathways [7,8] and promotes stem cell mobilization [9,10], providing mechanistic plausibility to our findings. Importantly, the inclusion of a sham group confirmed that megakaryocyte stimulation was specific to true acupuncture points.

We recognize the preliminary nature of this work and the small sample size. Future investigations should assess TPO modulation, platelet counts, and functional outcomes to elucidate the full hematopoietic impact of electroacupuncture and its translational potential.

In conclusion, our pilot study demonstrates that electroacupuncture stimulates megakaryocyte production in mice and provides a minimally invasive model for repeated BM sampling. We thank the editor for considering this letter and welcome feedback from the Hematology, Transfusion and Cell Therapy readership.

Conflicts of interest

The authors declare no conflicts of interest.

Funding statement

This study received no specific funding.

REFERENCES

- Che S, Looney MR. Understanding megakaryocyte phenotypes and the impact on platelet biogenesis. Transfusion (Paris). 2024;64:1372–80. https://doi.org/10.1111/trf.17927.
- Koupenova M, Livada A, Morrell CN. Platelet and megakaryocyte roles in innate and adaptative immunity. Circ Res. 2022;130:288–308. https://doi.org/10.1161/CIRCRESAHA.121. 319821.
- 3. Milosevic TV, Vertenoeil G, Vainchenker W, Tulkens PM, Constantinescu SN, Van Bambeke F. Oxazolidinone antibiotics impair *ex vivo* megakaryocyte differentiation from hematopoietic progenitor cells and their maturation into platelets. Antimicrob Agents Chemother. 2024;68:e00533. https://doi.org/10.1128/aac.00533-24.
- He E, Sui H, Wang H, Zhao X, Guo W, Dai Z, et al. Interleukin-19 in Bone Marrow Contributes to Bone Loss Via Suppressing Osteogenic Differentiation Potential of BMSCs in Old Mice. Stem Cell Rev and Rep. 2024;20:1311–24. https://doi.org/ 10.1007/s12015-024-10709-3.
- Wang W, Zhang K, Dai L, Hou A, Meng P, Ma J. Investigating the protective effects of Astragalus polysaccharides on cyclophosphamide-induced bone marrow suppression in mice and bone mesenchymal stem cells. Mol Immunol. 2024;171:93–104. https://doi.org/10.1016/j.molimm.2024.05.008.
- Verderio P, Lecchi M, Ciniselli CM, Shishmani B, Apolone G, Manenti G. 3Rs principle and legislative decrees to achieve high standard of animal research. Animals (Basel). 2023;13:277. https://doi.org/10.3390/ani13020277.

- 7. Wen J, Chen X, Yang Y, Liu J, Li E, Liu J, et al. Acupuncture medical therapy and its underlying mechanisms: a systematic review. Am J Chin Med. 2021;49:1–23. https://doi.org/10.1142/S0192415X21500014.
- Liu CH, Yang MH, Zhang GZ, Wang XX, Li B, Li M, et al. Neural networks and the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation in depression. J Neuroinflammation. 2020;17:54. https://doi.org/10.1186/s12974-020-01732-5.
- 9. Purwaningrum M, Jamilah NS, Purbantoro SD, Sawangmake C, Nantavisai S. Comparative characteristic study from bone marrow-derived mesenchymal stem cells. J Vet Sci. 2021;22: e74. https://doi.org/10.4142/jvs.2021.22.e74.
- Salazar TE, Richardson MR, Beli E, Ripsch MS, George J, Kim Y, et al. Electroacupuncture promotes central nervous systemdependent release of mesenchymal stem cells. Stem Cells. 2017;35:1303–15. https://doi.org/10.1002/stem.2613.

Luiza P.R. dos Santos Mariani a, Rita M.V.M. Rocha b, Lidiane M.B. Leite, Alexandra C. Senegaglia, Pedro V. Michelotto a,*

- ^a Graduate Program in Animal Science, Pontifícia Universidade Católica Paraná, Rua Imaculada Conceição 1155, Prado Velho, 80215-901, Curitiba, PR, Brazil
- ^b Veterinary Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
- ^c Core for Cell Technology, Pontificia Universidade Católica do Paraná, Curitiba, PR, Brazil

*Corresponding author.

E-mail address: p.michelotto@pucpr.br (P.V. Michelotto).

Received 2 May 2025 Accepted 21 May 2025 Available online 23 August 2025

https://doi.org/10.1016/j.htct.2025.103966 2531-1379/

© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

www.htct.com.br

Letter to the Editor

The tower of babel in hematology: The World Health Organization and International Consensus Classification systems

Let us begin with a thought experiment. Imagine, dear reader, that you and we - the authors - are touring a large zoo. As we pass by the reptile section, Dr. Rego, who to my knowledge knows nothing about reptiles, suddenly exclaims: "Look at this beautiful specimen of an alligator!" Observing the animal, I concur: "Indeed." However, you, the reader, upon seeing the same animal, object: "This is not an alligator, but a crocodile." Dr. Rego reexamines the animal and insists: "I am certain this is an alligator. I have seen many alligators in other zoos, and I am confident this is one." Yet you persist: "It is easy to see that this is not an alligator, but a crocodile; one only needs to examine its features carefully." The discussion begins to escalate but is abruptly interrupted when our guide announces it is time to move on to the bird section. Later, I find myself reflecting on the nature of classification and what it means to define entities in the world. Was that reptile an alligator or a crocodile? As someone who is not an expert in herpetology, I cannot say with certainty. However, I am sure of one thing: the animal was either an alligator or a crocodile – it could not be both. In philosophical terms, this presents a genuine dichotomy: the reptile in question must be one or the other. These two categories are mutually exclusive. Given that the creature was a single, individual animal, it was either an alligator or, alternatively, a crocodile, but never both.

But what do alligators and crocodiles have to do with issues in hematology? Believe it or not, dear reader, the fact is that nowadays hematologists not only fail to distinguish between alligators and crocodiles (which in itself is not a serious concern, since such distinctions are strictly the domain of zoologists), but also, and this is a real problem, they have come to believe that "the same animal can be both an alligator and a crocodile!" Or, what amounts to the same thing, that a single hematologic disease can be simultaneously classified as disease X and disease Y. Allow us to explain this in a more appropriate way.

The current problems began in 2020, when preparations for the final version of the 5th Edition of the World Health

Organization (WHO) Classification – commonly referred to as the "blue book" - were initiated. However, a brief historical overview is necessary to understand the present situation. Up until the 4th Edition of the WHO blue book, a collaborative group of hematologists, pathologists, oncologists, and geneticists formed the Clinical Advisory Committee (CAC), which operated under the auspices of the International Agency for Research on Cancer (IARC), the Society for Hematopathology (SH), and the European Association for Haematopathology (EAHP). Following each CAC meeting, the principal pathologists worked to resolve the difficult issues related to the committee's recommendations and published their conclusions in scientific articles prior to the formal release of the WHO blue book [1]. However, as reported by Daniel Arber and colleagues [1], "In 2020, Ian Cree, Head of the Evidence Synthesis and Classification Branch of the IARC in charge of the publication of the WHO blue books, notified SH and EAHP that IARC was ending the successful partnership with SH and EAHP for the 5th edition WHO classification of hematopoietic tumors and that they would no longer follow the process described above for the three prior books." Next, "the Executive Committees of the SH and EAHP organized different multidisciplinary working groups that culminated in the CAC meeting held in Chicago in September 2021." Finally, the CAC members published the International Consensus Classification (ICC) of Myeloid and Lymphoid Neoplasms in four articles [2-5]. For its part, the WHO published its independent and final classification in the traditional blue book format in

At first glance, this dispute between two professional groups may appear to be a remote concern for hematologists who lead demanding clinical lives, often far removed from academic debates and focused on treating patients with life-threatening diseases. And indeed, this may largely be the case. In fact, a recent study comparing the WHO and ICC classifications found that only 1.3 % of acute myeloid leukemia (AML) cases showed "major diagnostic

discrepancies" – defined as differences in diagnosis with significant and clear therapeutic implications [7]. However, consider the following scenario: a patient presents with anemia, megakaryocytic dysplasia, 7 % bone marrow blasts, and mutations in DNMT3A, NRAS, and NPM1. According to the WHO blue book, an "increase in blasts in the peripheral blood and/or bone marrow" is essential for an AML diagnosis. Traditionally, >5 % in bone marrow or >2 % in the blood have been considered abnormal. Thus, according to the WHO, the diagnosis for this case is AML with mutated NPM1. In contrast, according to the ICC, because the blast percentage is below 10 %, this patient would be diagnosed with myelodysplastic syndrome, not otherwise specified (MDS-NOS). This discordance between the WHO and ICC regarding the minimum blast percentage for the diagnosis of AML is a very strange situation because, in effect, the patient in question clearly has a single disease, which cannot simultaneously be classified as both AML with mutated NPM1 and MDS-NOS.

The crucial point here is that the existence of two divergent systems for the classification of AML creates problems that extend beyond the classification of individual cases. For instance, due to the coexistence of the WHO and ICC proposals, the 2024 Brazilian consensus on acute promyelocytic leukemia (APL) does not clearly specify the minimum blast percentage required for an APL diagnosis [8].

There are two potential solutions to this problem. The first is to accept both classifications. The second is to pursue rapid reconciliation between the WHO and ICC. We believe the latter is the best option. Indeed, we recently adopted an unorthodox approach to this issue and concluded that the existing literature already supports a single diagnostic criterion for at least five clinical entities within the group of "AML subcategories with defining genetic abnormalities": AML with PML:: RARA rearrangement, AML with NPM1 mutation, AML with KMT2A rearrangement, AML with MECOM rearrangement, and AML with in-frame bZIP CEBPA (Table 1) [9]. Meanwhile, we believe that the best approach in cases of conflicting diagnoses is to treat patients according to the most appropriate available therapy, guided by the following principles: (1) avoid categorizing an aggressive neoplasm as a "low-grade" disease (for example, diagnosing MDS when AML is the most accurate diagnosis), thereby preventing undertreatment; and (2) avoid categorizing a less aggressive neoplasm as a more aggressive one (such as diagnosing AML when MDS is the most accurate diagnosis), thereby preventing overtreatment [9].

Table 1 – Preliminary proposal for a unified World Health Organization classification and International Consensus Classification.

AML with defining genetic abnormalities	Blast cutoff
APL with PML::RARA FUSION AML with NPM1 mutation AML with KMT2A rearrangement AML with MECOM	Increase peripheral blood and/or bone marrow blasts
arrangement AML with in-frame bZIP CEBPA mutations	At least 10 % of blasts

Returning to the thought experiment: a single reptile can never be both an alligator and a crocodile simultaneously. Academia should return to basic logic, which states that a thing is always equal to itself, according to the *principle of identity*. In simpler terms, if something is "A," then "A" is equal to "A." Accordingly, a patient with a single disease cannot have two distinct diseases at the same time, for the simple reason that the patient has only one disease.

The purpose of classification systems is to organize and categorize objects, phenomena, information, or entities based on common characteristics, thereby facilitating their identification, study, communication, and practical application. The coexistence of the WHO and ICC systems does not make the classification of hematolymphoid tumors a simpler task, but a more complex one. The two proposals must be urgently harmonized into a single, universal classification system.

Conflicts of interest

The authors report no conflict of interest.

REFERENCES

- 1. Arber DA, Campo E, Jaffe ES. Advances in the classification of myeloid and lymphoid neoplasms. Virchows Arch. 2023 Jan;482(1):1–9.
- Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022 Sep 15;140 (11):1200–28.
- 3. Campo E, Jaffe ES, Cook JR, Quintanilla-Martinez L, Swerdlow SH, Anderson KC, et al. The international consensus classification of mature lymphoid neoplasms: a report from the clinical advisory committee. Blood. 2022 Sep 15;140(11):1229–53.
- de Leval L, Alizadeh AA, Bergsagel PL, Campo E, Davies A, Dogan A, et al. Genomic profiling for clinical decision making in lymphoid neoplasms. Blood. 2022 Nov 24;140(21):2193–227.
- Duncavage EJ, Bagg A, Hasserjian RP, DiNardo CD, Godley LA, Iacobucci I, et al. Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood. 2022 Nov 24;140(21):2228–47.
- 6. International Agency for Research on Cancer. In: Cree IA, ed. Haematolymphoid tumours: who classification of tumours, 5th ed., Haematolymphoid tumours: who classification of tumours, 11, Lyon: International Agency for Research on Cancer; 2022...
- 7. Chopra S, Bailey NG. Application of the international consensus classification and World Health Organization 5th edition classification to a series of myeloid neoplasms. Am J Clin Pathol. 2023 Dec 1;160(6):566–70.
- 8. de Figueiredo-Pontes LL, Catto LFB, Chauffaille MLLF, Pagnano KBB, Madeira MIA, Nunes EC, et al. Diagnosis and management of acute promyelocytic leukemia: Brazilian consensus guidelines 2024 on behalf of the Brazilian association of hematology, hemotherapy and cellular therapy. Hematol Transfus Cell Ther. 2024;46(4):553–69. Oct-Dec.
- 9. Matos DM, Rego EM. What is acute myeloid leukemia? EJHaem. 2025 May 25;6(3):e70063. https://doi.org/10.1002/jha2.7006.

Daniel Mazza Matos

a Ab.*, Eduardo Magalhaes Rego
a Flow Cytometry Division, Cell Processing Center (CPC), Center of Hematology and Hemotherapy of Ceará (HEMOCE), Brazil
b Faculty of Medicine, University of Fortaleza (UNIFOR), Brazil
c Faculty of Medicine of the University of São Paulo, Department of Clinical Medicine of the Faculty of Medicine of USP, University of São

*Corresponding author at: Center of Hematology and Hemotherapy of Ceará (HEMOCE), Avenida José Bastos, 3390, Fortaleza-CE, 60431-086, Brazil.

E-mail address: dmazza@alumni.usp.br (D.M. Matos).

Paulo, Brazil

Received 7 July 2025 Accepted 26 July 2025 Available online 20 September 2025

https://doi.org/10.1016/j.htct.2025.103985 2531-1379/

© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

www.htct.com.br

Letter to the Editor

Regarding "Challenges in diagnosing thrombotic thrombocytopenic purpura"

Dear Editor,

We appreciate the thoughtful critique of our recent case report reported as Images in Clinical Hematology [1] and would like to clarify points raised regarding the diagnostic criteria for immune thrombotic thrombocytopenic purpura (iTTP).

In their response, Jacobs et al. [2] express concern that our case lacked sufficient information to confirm a diagnosis of iTTP, specifically citing the absence of reported ADAMTS13 autoantibody data and genetic testing. We agree with the importance of distinguishing immune-mediated from congenital TTP, as this has significant implications for management and prognosis.

The critique reads as follows:

"As such, without the identification of an autoantibody, genetic testing should be performed to exclude mutations in the ADAMTS13 gene. Given that the authors did not report an antibody, nor did they assess for genetic mutations, this case cannot be considered a 'confirmed' case of iTTP."

We would like to clarify that an ADAMTS13 inhibitor screen was indeed performed in our patient and yielded a positive result. The inhibitor titer, measured using the Bethesda assay, was 2.2 (reference <0.4), indicating the presence of a circulating autoantibody against ADAMTS13. This supports the diagnosis of acquired, immune-mediated TTP. Due to word count limitations and the case vignette format, this detail was not included in the original publication.

We agree that in the absence of detectable autoantibodies, the possibility of congenital TTP should be considered, and genetic testing may be warranted. However, in our case, the presence of a quantifiable inhibitor supports an immunemediated process, and the clinical picture (including age of onset and concurrent autoimmune disease) makes congenital TTP unlikely.

We appreciate the ongoing discussion regarding the importance of diagnostic precision in TTP. We fully agree that thorough documentation of relevant laboratory findings is

critical, not only for accurate diagnosis, but also for management and epidemiological purposes.

Conflicts of interest

No conflicts of interest to declare.

REFERENCES

- de Oliveira Filho CM, Bode-Sojobi I, Lam BD, Conrad S, Berry J, Carney BJ. Assessing treatment response in thrombotic thrombocytopenic purpura: beyond the platelet count. Hematol, Transfus Cell Ther. 2024;46(Suppl 6):S442–4. https://doi.org/ 10.1016/j.htct.2024.06.012.
- Jacobs JW, Booth GS, Adkins BD. Challenges in diagnosing thrombotic thrombocytopenic purpura. Hematol Transfus Cell Ther. 2025;47(3):103842. https://doi.org/10.1016/j.htct.2025. 103842. Epub 2025 May 10. PMID: 40349483; PMCID: PMC12365509.

Cilomar Martins de Oliveira Filho *, Brian J. Carney Beth Israel Deaconess Medical Center

*Correspondence author at: Beth Israel Deaconess Medical Center Medicine 330 Brookline Ave, Boston, MA, 02215, USA. E-mail address: cmarti21@bidmc.harvard.edu (C. Martins de Oliveira Filho).

Received 3 July 2025 Accepted 28 July 2025 Available online 20 September 2025

https://doi.org/10.1016/j.htct.2025.103986 2531-1379/

© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

www.htct.com.br

Letter to the Editor

Fulminant hepatitis secondary to nivolumab in a patient with Hodgkin's Lymphoma after complete remission

Dear Editor,

Hodgkin lymphoma (HL) is a hematologic malignancy with a high cure rate, particularly after first-line treatment based on immunochemotherapy [1]. For relapsed or refractory (R/R) HL, which affects 10–30 % of patients depending on their initial staging, the therapeutic approach often includes second-line regimens consolidated with autologous stem cell transplantation. Immunotherapy, particularly programmed death 1 (PD-1) inhibitors, has emerged as an effective option for achieving long-term disease control in these cases [2].

Nivolumab, a PD-1 inhibitor, is an approved therapy for R/R HL and has demonstrated significant clinical efficacy. However, it is associated with a spectrum of adverse events, including fatigue, rash, loss of appetite, nausea, diarrhea, arthralgia, and elevated transaminases [3,4]. More severe toxicities, such as pneumonitis and autoimmune hepatitis, have also been reported, particularly in solid tumor oncology [5].

There is a current discussion regarding the role of autologous transplantation in patients receiving PD-1 inhibitors (e. g., nivolumab, pembrolizumab). Specifically, the debate centers on the optimal time to discontinue therapy in two distinct patient groups: those who do not undergo consolidation therapy and those who achieve only partial remission after two years. The case reported here serves as a basis to discuss at what point we should start worrying about the extent of long-term treatment with PD-1 and its risks, especially in patients who are in complete remission.

Case presentation

A 28-year-old man was diagnosed with advanced-stage classical HL with a high International Prognostic Score (IPS >2) in January 2017. This patient received five irregular cycles of first-line eBEACOP-D (escalated bleomycin (Bleomycin), etoposide (Etoposide), Doxorubicin, Cyclophosphamide, Vincristine, Procarbazine, and Prednisone plus dacarbazine) therapy with poor adherence and presented with a primary refractory

disease. Subsequent salvage therapies with IGEV (Ifosfamide, Gemcitabine, Vinorelbine, and Prednisolone), DHAP (Dexamethasone, High-dose Ara-C [cytarabine (Cytarabine)], and Platinol [Cisplatin]), and brentuximab showed suboptimal responses due to poor adherence. In 2020, nivolumab was initiated as monotherapy, and, after six cycles, he finally achieved complete remission. Despite irregular follow-up, clinical remission was maintained while continuing monthly nivolumab therapy. Since the patient did not undergo imaging to assess disease response after two years, nivolumab therapy was continued.

In October 2023, three years after achieving complete remission, the patient suddenly started with nausea, vomiting, right upper quadrant abdominal pain, dyspnea, and myalgia, necessitating hospitalization. Laboratory tests revealed fulminant hepatitis with markedly elevated transaminases (AST 3108 U/L, ALT 2380 U/L), canalicular enzymes (alkaline phosphatase 312 U/L, GGT 238 U/L, total bilirubin 20.4 mg/dL), and coagulopathy (INR: 4.49).

The patient underwent a series of laboratory tests that showed no sign of psychoactive substance use, alcohol abuse, use of other medications, or any concomitant infectious condition. The hepatology team described the main hypothesis in this case as an autoimmune fulminant hepatitis secondary to the use of nivolumab. Despite supportive care, he progressed to liver failure, multiorgan dysfunction, and refractory shock, leading to death within days after admission. The patient's response status at the time of death was not assessed.

Discussion

In 2019, Martins et al. [6] published a review on the adverse effects of the use of checkpoint inhibitors, demonstrating that the frequency of immune-related adverse events related to this kind of medication depends on the agents used, exposure time and the dose. Hepatitis was described as the second most common fatal adverse effect, along with pneumonitis

and colitis in patients using PD-1 inhibitors. The review does not describe cases of fulminant autoimmune hepatitis. Nivolumab has also been associated with a well-documented risk of adverse events, including Grade 3 or higher toxicities in approximately 10 % of cases, often necessitating treatment discontinuation [6].

No alternative etiology for the acute liver failure was identified, strongly implicating nivolumab as the causative agent. To our knowledge, this represents the first reported instance of nivolumab-induced fulminant hepatitis in a patient with HL in remission. This case demonstrates that adverse effects from nivolumab can occur, persist, and manifest as severe, lifethreatening events even in patients with sustained remission.

Conclusion

This case underscores the importance of monitoring hepatic function in patients undergoing nivolumab therapy for HL, even those in remission. Early identification of liver dysfunction and prompt intervention are critical to prevent fatal outcomes. High-risk patients receiving immune-checkpoint inhibitors should be regularly monitored by specialized multidisciplinary teams for treatment-related complications, ideally using a personalized surveillance strategy.

This serves as a warning to restart discussions on prolonged therapies with PD-1 inhibitors, the need for 'chemotherapy holidays' even for hematologic malignancies and the importance of consolidation as a mark of the end of treatment.

Conflicts of interest

Authors have no interests that are directly or indirectly related to the work submitted for publication.

REFERENCES

 Kaseb H, Babiker HM. H.odgkin lymphoma. 2023 Jun 26. Stat-Pearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. PMID: 29763144.

- Randall MP, Spinner MA. O.ptimizing treatment for relapsed/ refractory classic Hodgkin lymphoma in the era of immunotherapy. Cancers (Basel). 2023;15(18):4509. https://doi.org/ 10.3390/cancers15184509. vnPMID: 37760478; PMCID: PMC10526852.
- 3. Choueiri TK, et al. Cabozantinib plus Nivolumab and Ipilimumab in renal-cell carcinoma. Engl J Med. 2023;388(19): 1767–78. https://doi.org/10.1056/NEJMoa2212851. vnPMID: 37163623; PMCID: PMC10257898.
- Hellmann MD, et al. Nivolumab plus ipilimumab in advanced non-Small-cell lung cancer. N Engl J Med. 2019; 381:2020-31. https://doi.org/10.1056/NEJMoa1910231. v.
- 5. Armand P, et al. Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the Multicohort single-arm Phase II CheckMate 205 trial. J Clin Oncol. 2018; 36(14):1428–39. vnDOI:.
- Martins F, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol. 2019;16:563–80. https://doi.org/10.1038/s41571-019-0218-0. v.

Ana Júlia Negrelli dos Santos D a,*, Arthur Gomes Oliveira Braga b, Talita Maira Bueno da Silveira a,b,c

- ^a Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, SP, Brazil
- ^b A.C.Camargo Cancer Center, São Paulo, SP, Brazil
- ^c Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, SP, Brazil

*Corresponding author at: Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, SP, Brazil.

E-mail address: ananegrelli@hotmail.com
(A.J. Negrelli dos Santos).

Received 14 May 2025 Accepted 22 May 2025 Available online 25 September 2025

https://doi.org/10.1016/j.htct.2025.103983 2531-1379/

© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

www.htct.com.br

Images in Clinical Hematology

Howell-Jolly-like inclusions in granulocytes of a liver transplant recipient

Verónica Roldán Galiacho • *, Sara Hormaza de Jauregui, Lourdes Elicegui Fernández

Hematology Department, Hospital Universitario Cruces. 48903 Barakaldo. Bizkaia. Spain

ARTICLE INFO

Article history:
Received 6 May 2025
Accepted 22 May 2025
Available online 10 September 2025

A 38-year-old woman with history of a liver transplant performed four months earlier, presented with fever and multiple lymphadenopathies. She was taking mycophenolate, tacrolimus and prednisone for chronic rejection, lamivudine because of hepatitis B virus serology, and valganciclovir due to recent reactivation of cytomegalovirus.

On admission the complete blood count findings included: hemoglobin 9.7 g/dL, platelets 260 \times 10 9 /L, leukocytes 1.5 \times 10 9 /L with 0.2 \times 10 9 /L neutrophils and elevated C-reactive protein (120 mg/L).

Peripheral blood examination showed hyposegmentation in neutrophils with Howell-Jolly body-like inclusions (Figure 1).

Blood cultures for bacteria and fungus did not support growth of any organism and serologic tests were negative. Additionally, lymph node aspiration cytology did not reveal tumoral cells however, a polymerase chain reaction-based assay to detect Mycobacterium tuberculosis in the ganglion was positive. With the diagnosis of ganglionic tuberculosis, the patient received treatment with isoniazid, pyrazinamide, myambutol and levofloxacin. After one year of treatment, the leukocyte count is normal and the adenopathies have disappeared in a full body

Howell-Jolly body-like inclusions in granulocytes are small dense basophilic inclusions similar to Howell-Jolly in erythrocytes. Their appearance in neutrophils may indicate a nuclear fragmentation induced by antiviral treatment with nucleoside analogs, which act on viral DNA. They arise secondary to stressed granulopoiesis often induced by immunosuppressive states including congenital conditions or acquired due to drugs for HIV infection or chemotherapy [1,2]. They are also been described in patients with Mycobacterium avium infection and more rarely in myelodysplastic syndromes [3]. These inclusions must be differentiated from other neutrophil inclusions such as those observed in intracellular bacterial infections, those found in genetic conditions such as Chédiak-Higashi syndrome, or Döhle bodies [1].

^{*} Corresponding author at: Hematology Department, Hospital Universitario Cruces, Plaza Cruces s/n, 48903, Barakaldo. Bizkaia, Spain.

E-mail address: veronica.roldangaliacho@osakidetza.eus (V. Roldán Galiacho).

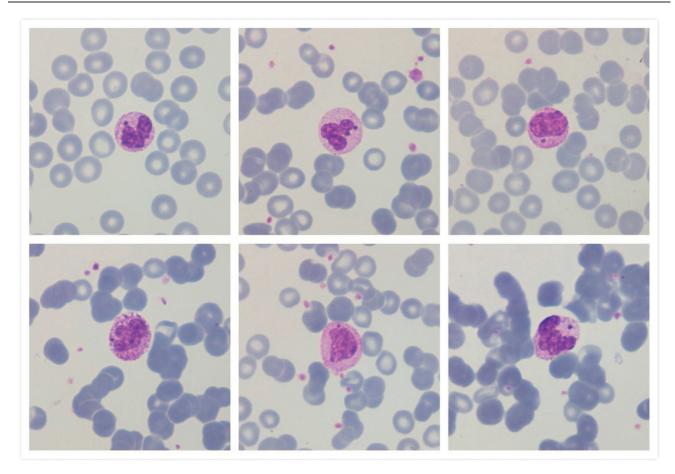


Figure 1-Peripheral blood smear showing atypical inclusions ("Howell-Jollylike-bodies") in granulocytes

(Optical microscopy images using May-Grünwald Giemsa stain - x1000 magnification).

Conflicts of interest

The authors of this paper have no conflicts of interest, including specific financial interests, relationships, and/or affiliations relevant to the subject matter or materials included.

REFERENCES

[1]. Morales-Indiano C, Arenillas Rocha L, Mas Bosch V, Florensa Brichs L. Howell-jolly body-like inclusions in

- immunocompromised patients with antiviral treatment. Ann Hematol. 2014;93(12):2091–2. Dec.
- [2]. Omman R, Kwong C, Shepherd D, Molnar JA, Velankar MM, Mirza KM. Revisiting Howell-Jolly body-like cytoplasmic inclusions in neutrophils: a report of two cases and confirmation of nuclear origin. J Hematol. 2017;6 (4):101–4. Oct.
- [3]. Mattana Dionisio L, Koehler J, de Faria Moss M. Howell-jolly body-like inclusions in neutrophils of a patient with a myelodysplastic syndrome. Br J Haematol. 2021;192(5):799.. Mar.

www.htct.com.br

Images in Clinical Hematology

VEXAS syndrome: more than just vacuoles

Marco P. Barros Pinto *

Hospital Santa Maria — Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal

ARTICLE INFO

Article history:
Received 22 May 2025
Accepted 8 June 2025
Available online 16 September 2025

A 78-year-old man with an autoimmune disorder (vasculitis) and a recent diagnosis of VEXAS syndrome, confirmed by next generation sequencing (presence of the p.Met41Thr variant of the UBA1 gene with a variant allele frequency of 56.4 %) was admitted to hospital.

Analytically he presented: erythrocytes 3.75 \times 10¹²/L (reference values [RV]: 4.5–5.9 \times 10¹²/L), hemoglobin 132 g/L (RV: 130–175 g/L), mean corpuscular volume 103.6 fL (RV: 80–97 fL), leucocytes 3.9 \times 10⁹/L (69 % neutrophils, 20 % lymphocytes), and platelets 197 \times 10⁹/L (RV: 150–450 \times 10⁹/L).

The bone marrow aspirate smears were normocellular, with a myeloid to erythroid (M:E) ratio of 2:1. The smears also revealed 20 % myeloid precursors (all stages) and 30 % proerythroblasts with cytoplasmic vacuoles. Other notable findings included pseudo-Pelger-Hüet anomalies and megaloblastic precursors. Most of the megakaryocytes exhibited a high nuclear-to-cytoplasmic ratio; specifically, 50 % of total megakaryocytes (TM) were monolobated with eccentrically placed nuclei, and other megakaryocytes showed a wreath-like rearrangement of nuclear lobes. Additionally, multinuclear megakaryocytes (3 % TM) and megakaryocyte emperipolesis (3 % TM) were observed (Figure 1). There was no increase in blasts. Storage iron was decreased with no ring sideroblasts.

E-mail address: marco.pinto@chln.min-saude.pt https://doi.org/10.1016/j.htct.2025.103984

VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoin-flammatory, somatic) was first reported by Beck et al. in 2020. Vacuoles are observed in erythroid and myeloid precursor cells [1]. The E1 enzyme is related to the ubiquitin activating enzyme encoded by the UBA1 gene, an X-linked gene [1]. Mutation in this gene is responsible for an autoinflammatory disease (characterized by recurrent fevers, cytopenias, chondritis, vasculitis, pulmonary inflammation, and neutrophilic dermatoses) as the result of somatic mutations in the blood [1].

The most frequent mutations are p.Met41Thr (49 %), p. Met41Val (26 %) and p.Met41Leu (19 %) [2].

In VEXAS syndrome the bone marrow is usually hypercellular with an increased M:E ratio (>4:1 in >70 % of cases) [2]. The presence of \geq 10 % of myeloid precursors with >1 vacuole can be both sensitive and specific for VEXAS syndrome, [3] however cytoplasmic vacuolization of myeloid and erythroid precursors can be found in other clinical settings: alcohol abuse, copper deficiency, treatments (chemotherapy and antibiotics), zinc toxicity, myelodysplastic syndrome, lymphoproliferative disorders, multiple myeloma, myeloproliferative neoplasms and acute myeloid leukemia, or as an artifact of sample preparation [2,3]. Furthermore, some atypical UBA1 variants can present absence of precursor vacuolization in the bone marrow [2].

Storage iron is usually increased with no significant number of ring sideroblasts (<10 % of cases) [2].

^{*} Correspondence author at: Centro Hospitalar Universitário Lisboa Norte, EPE, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.

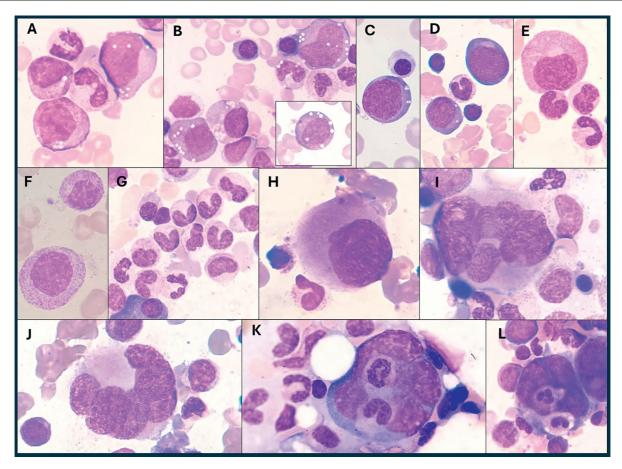


Figure 1–Bone marrow aspirate (May-Grünwald-Giemsa stain, \times 100 objective): Myeloid precursors with vacuoles (A, B); proerythroblasts with vacuoles (C, D); megaloblastic precursors (D, E, F); pseudo-Pelger-Hüet (G); monolobated megakaryocytes (H); megakaryocytes with a wreath-like rearrangement of nuclear lobes (I, J); megakaryocytes emperipolesis (K, L).

The full blood count can show: macrocytic anemia (90 -100 %), lymphopenia (60-80 %), monocytopenia (50 %), neutropenia (<30 %) and thrombocytopenia (45-69 %) [2].

The UBA1 gene mutation is also a predisposing factor for myelodysplastic syndromes, plasma cell proliferation disorders (monoclonal gammopathy of undetermined significance, multiple myeloma) or both [2].

Conflicts of interest

The author declares no conflicts of interest.

REFERENCES

- [1]. Grayson PC, Patel BA, Young NS. VEXAS syndrome. Blood. 2021;137(26):3591–4. https://doi.org/10.1182/blood.2021011455.
- [2]. Koster MJ, Lasho TL, Olteanu H, et al. VEXAS syndrome: clinical, hematologic features and a practical approach to diagnosis and management. Am J Hematol. 2024;99(2):284–99. https://doi.org/10.1002/ajh.27156.
- [3]. Cherniawsky H, Friedmann J, Nicolson H, et al. VEXAS syndrome: a review of bone marrow aspirate and biopsies reporting myeloid and erythroid precursor vacuolation. Eur J Haematol. 2023;110(6):633–8. https://doi.org/10.1111/ejh.13944.