Previous Page  121 / 156 Next Page
Information
Show Menu
Previous Page 121 / 156 Next Page
Page Background

537

cells from human adipose tissue: implications for cell-based

therapies. Tissue Eng (2001) 7(2):211–228.

49. Mueller M , Wolfs T, Schoeberlein A , Gavilanes A, Surbek D,

Kramer B. Mesenchymal stem/stromal cells-a key mediator

for regeneration after perinatal morbidity? Molecular and

Cellular Pediatrics (2016) 3:6 DOI 10.1186/s40348-016-

0034-x.

50. Arnalda Lanfranchi a, Fulvio Porta a, Gaetano Chirico,

Stem cells and the frontiers of neonatology. Early Human

Development 85 (2009) S15–S18.

51. De Coppi P, Bartsch Jr G, Siddiqui MM, Xu T, Santos CC, et al.

Isolation of amniotic stem cell lines with potential for therapy.

Nat Biotechnol 2007;25:100–6.

52. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini

F, et al Minimal criteria for defining multipotent mesenchymal

stromal cells. The International Society for Cellular Therapy

position statement. Cytotherapy (2006) 8(4):315–317.

53. Roobrouck VD, Vanuytsel K, Verfaillie CM Concise review:

culture mediated changes in fate and/or potency of stem cells.

Stem Cells (2011) 29(4): 583–589.

54. Joerger-Messerli M, Bruhlmann E, Bessire A, Wagner A,

Mueller M, Surbek DV, Schoeberlein A Preeclampsia enhances

neuroglial marker expression in umbilical cord Wharton’s jelly-

derived mesenchymal stem cells. J Matern Fetal Neonatal Med

(2015) 28(4):464–469.

55. In ‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA,

Claas FH, et al Amniotic fluid as a novel source of mesenchymal

stem cells for therapeutic transplantation. Blood (2003)

102(4):1548– 1549.55).

56. Moorefield EC, McKee EE, Solchaga L, Orlando G, Yoo JJ, Walker

S, et al Cloned, CD117 selected human amniotic fluid stem

cells are capable of modulating the immune response. PLoS

ONE (2011) 6(10):e26535.

57. Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK, et

al Human Wharton’s jelly stem cells have unique transcriptome

profiles compared to human embryonic stem cells and other

mesenchymal stem cells. Stem Cell Rev (2011) 7(1):1–16.

58. Subramanian A, Fong CY, Biswas A, Bongso A Comparative

characterization of cells from the various compartments

of the human umbilical cord shows that the Wharton’s jelly

compartment provides the best source of clinically utilizable

mesenchymal stem cells. PLoS ONE (2015) 10(6): e0127992.

59. Troyer DL, Weiss ML Wharton’s jelly-derived cells are a primitive

stromal cell population. Stem Cells (2008) 26(3):591–599.

60. Balasubramanian S, Thej C, Venugopal P, Priya N, Zakaria Z, et

al Higher propensity of Wharton’s jelly derived mesenchymal

stromal cells towards neuronal lineage in comparison to those

derived from adipose and bone marrow. Cell Biol Int (2013)

37(5):507–515.

61. Joerger-Messerli M, Bruhlmann E, Bessire A, Wagner A, Mueller

M, et al. Preeclampsia enhances neuroglial marker expression

in umbilical cord Wharton’s jelly-derived mesenchymal stem

cells. J Matern Fetal Neonatal Med (2015) 28(4):464–469.

62. Sohni A, Verfaillie CM Mesenchymal stem cells migration

homing and tracking. Stem Cells Int (2013) 2013:130763.

63. Yang WZ, Zhang Y, Wu F, Min WP, Minev B, et al. Safety

evaluation of allogeneic umbilical cord blood mononuclear

cell therapy for degenerative conditions. J Transl Med (2010)

8:75.

64. Schoeberlein A, Mueller M, Reinhart U, Sager R, Messerli M,

Surbek DV. Homing of placenta-derived mesenchymal stem

cells after perinatal intracerebral transplantation in a rat

model. Am J Obstet Gynecol (2011) 205(3): 277.

65. Zhang X, Wang H, Shi Y, Peng W, Zhang S, Zhang W, et al.

Role of bone marrow-derived mesenchymal stem cells in the

prevention of hyperoxia-induced lung injury in newborn mice.

Cell Biol Int (2012) 36(6):589–594

66. Jaerve A, Muller HW Chemokines in CNS injury and repair. Cell

Tissue Res (2012) 349(1):229–248.

67. Gao LR, Zhang NK, Ding QA, Chen HY, Hu X, Jiang S, et al.

Common expression of stemness molecular markers and early

cardiac transcription factors in human Wharton’s jellyderived

mesenchymal stem cells and embryonic stem cells. Cell

Transplant (2013) 22(10):1883–1900.

68. Yang JX, Zhang N, Wang HW, Gao P, Yang QP, Wen QP CXCR4

receptor overexpression in mesenchymal stem cells facilitates

treatment of acute lung injury in rats. J Biol Chem (2015)

290(4):1994–2006.

69. Yang DY, Sheu ML, Su HL, Cheng FC, Chen YJ, Chen CJ, et

al. Dual regeneration of muscle and nerve by intravenous

administration of human amniotic fluid-derived mesenchymal

stem cells regulated by stromal cell-derived factor-1alpha in

a sciatic nerve injury model. J Neurosurg (2012) 116(6):1357–

1367.

70. Aslam M, Baveja R, Liang OD, Fernandez-Gonzalez A, Lee C,

Mitsialis SA, et al. Bone marrow stromal cells attenuate lung

injury in a murine model of neonatal chronic lung disease. Am

J Respir Crit Care Med (2009) 180(11):1122–1130.

71. Bruno S, Deregibus MC, Camussi G The secretome of

mesenchymal stromal cells: role of extracellular vesicles in

immunomodulation. Immunol Lett. (2015) doi:10.1016/j.

imlet.2015.06.007.

72. Maron-Gutierrez T, Silva JD, Asensi KD, Bakker-Abreu I, Shan Y,

Diaz BL, et al Effects of mesenchymal stem cell therapy on the

time course of pulmonary remodeling depend on the etiology

of lung injury in mice. Crit Care Med (2013) 41(11):e319–

e333.

73. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD,

et al Human bone marrow stromal cells suppress T-lymphocyte

proliferation induced by cellular or nonspecific mitogenic

stimuli. Blood (2002) 99(10):3838–3843.

74. Jellema RK, Wolfs TG, Lima Passos V, Zwanenburg A, Ophelders

DR, Kuypers E, et al Mesenchymal stem cells induce T-cell

tolerance and protect the preterm brain after global hypoxia-

ischemia. PLoS ONE (2013) 8(8):e73031.

75. Duffy MM, Ritter T, Ceredig R, Griffin MD Mesenchymal stem

cell effects on T-cell effector pathways. Stem Cell Res Ther

(2011) 2(4):34.

[TERAPIA REGENERATIVA EN NEONATOLOGÍA - Dr. Hernán Villalón y cols.]