537
cells from human adipose tissue: implications for cell-based
therapies. Tissue Eng (2001) 7(2):211–228.
49. Mueller M , Wolfs T, Schoeberlein A , Gavilanes A, Surbek D,
Kramer B. Mesenchymal stem/stromal cells-a key mediator
for regeneration after perinatal morbidity? Molecular and
Cellular Pediatrics (2016) 3:6 DOI 10.1186/s40348-016-
0034-x.
50. Arnalda Lanfranchi a, Fulvio Porta a, Gaetano Chirico,
Stem cells and the frontiers of neonatology. Early Human
Development 85 (2009) S15–S18.
51. De Coppi P, Bartsch Jr G, Siddiqui MM, Xu T, Santos CC, et al.
Isolation of amniotic stem cell lines with potential for therapy.
Nat Biotechnol 2007;25:100–6.
52. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini
F, et al Minimal criteria for defining multipotent mesenchymal
stromal cells. The International Society for Cellular Therapy
position statement. Cytotherapy (2006) 8(4):315–317.
53. Roobrouck VD, Vanuytsel K, Verfaillie CM Concise review:
culture mediated changes in fate and/or potency of stem cells.
Stem Cells (2011) 29(4): 583–589.
54. Joerger-Messerli M, Bruhlmann E, Bessire A, Wagner A,
Mueller M, Surbek DV, Schoeberlein A Preeclampsia enhances
neuroglial marker expression in umbilical cord Wharton’s jelly-
derived mesenchymal stem cells. J Matern Fetal Neonatal Med
(2015) 28(4):464–469.
55. In ‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA,
Claas FH, et al Amniotic fluid as a novel source of mesenchymal
stem cells for therapeutic transplantation. Blood (2003)
102(4):1548– 1549.55).
56. Moorefield EC, McKee EE, Solchaga L, Orlando G, Yoo JJ, Walker
S, et al Cloned, CD117 selected human amniotic fluid stem
cells are capable of modulating the immune response. PLoS
ONE (2011) 6(10):e26535.
57. Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK, et
al Human Wharton’s jelly stem cells have unique transcriptome
profiles compared to human embryonic stem cells and other
mesenchymal stem cells. Stem Cell Rev (2011) 7(1):1–16.
58. Subramanian A, Fong CY, Biswas A, Bongso A Comparative
characterization of cells from the various compartments
of the human umbilical cord shows that the Wharton’s jelly
compartment provides the best source of clinically utilizable
mesenchymal stem cells. PLoS ONE (2015) 10(6): e0127992.
59. Troyer DL, Weiss ML Wharton’s jelly-derived cells are a primitive
stromal cell population. Stem Cells (2008) 26(3):591–599.
60. Balasubramanian S, Thej C, Venugopal P, Priya N, Zakaria Z, et
al Higher propensity of Wharton’s jelly derived mesenchymal
stromal cells towards neuronal lineage in comparison to those
derived from adipose and bone marrow. Cell Biol Int (2013)
37(5):507–515.
61. Joerger-Messerli M, Bruhlmann E, Bessire A, Wagner A, Mueller
M, et al. Preeclampsia enhances neuroglial marker expression
in umbilical cord Wharton’s jelly-derived mesenchymal stem
cells. J Matern Fetal Neonatal Med (2015) 28(4):464–469.
62. Sohni A, Verfaillie CM Mesenchymal stem cells migration
homing and tracking. Stem Cells Int (2013) 2013:130763.
63. Yang WZ, Zhang Y, Wu F, Min WP, Minev B, et al. Safety
evaluation of allogeneic umbilical cord blood mononuclear
cell therapy for degenerative conditions. J Transl Med (2010)
8:75.
64. Schoeberlein A, Mueller M, Reinhart U, Sager R, Messerli M,
Surbek DV. Homing of placenta-derived mesenchymal stem
cells after perinatal intracerebral transplantation in a rat
model. Am J Obstet Gynecol (2011) 205(3): 277.
65. Zhang X, Wang H, Shi Y, Peng W, Zhang S, Zhang W, et al.
Role of bone marrow-derived mesenchymal stem cells in the
prevention of hyperoxia-induced lung injury in newborn mice.
Cell Biol Int (2012) 36(6):589–594
66. Jaerve A, Muller HW Chemokines in CNS injury and repair. Cell
Tissue Res (2012) 349(1):229–248.
67. Gao LR, Zhang NK, Ding QA, Chen HY, Hu X, Jiang S, et al.
Common expression of stemness molecular markers and early
cardiac transcription factors in human Wharton’s jellyderived
mesenchymal stem cells and embryonic stem cells. Cell
Transplant (2013) 22(10):1883–1900.
68. Yang JX, Zhang N, Wang HW, Gao P, Yang QP, Wen QP CXCR4
receptor overexpression in mesenchymal stem cells facilitates
treatment of acute lung injury in rats. J Biol Chem (2015)
290(4):1994–2006.
69. Yang DY, Sheu ML, Su HL, Cheng FC, Chen YJ, Chen CJ, et
al. Dual regeneration of muscle and nerve by intravenous
administration of human amniotic fluid-derived mesenchymal
stem cells regulated by stromal cell-derived factor-1alpha in
a sciatic nerve injury model. J Neurosurg (2012) 116(6):1357–
1367.
70. Aslam M, Baveja R, Liang OD, Fernandez-Gonzalez A, Lee C,
Mitsialis SA, et al. Bone marrow stromal cells attenuate lung
injury in a murine model of neonatal chronic lung disease. Am
J Respir Crit Care Med (2009) 180(11):1122–1130.
71. Bruno S, Deregibus MC, Camussi G The secretome of
mesenchymal stromal cells: role of extracellular vesicles in
immunomodulation. Immunol Lett. (2015) doi:10.1016/j.
imlet.2015.06.007.
72. Maron-Gutierrez T, Silva JD, Asensi KD, Bakker-Abreu I, Shan Y,
Diaz BL, et al Effects of mesenchymal stem cell therapy on the
time course of pulmonary remodeling depend on the etiology
of lung injury in mice. Crit Care Med (2013) 41(11):e319–
e333.
73. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD,
et al Human bone marrow stromal cells suppress T-lymphocyte
proliferation induced by cellular or nonspecific mitogenic
stimuli. Blood (2002) 99(10):3838–3843.
74. Jellema RK, Wolfs TG, Lima Passos V, Zwanenburg A, Ophelders
DR, Kuypers E, et al Mesenchymal stem cells induce T-cell
tolerance and protect the preterm brain after global hypoxia-
ischemia. PLoS ONE (2013) 8(8):e73031.
75. Duffy MM, Ritter T, Ceredig R, Griffin MD Mesenchymal stem
cell effects on T-cell effector pathways. Stem Cell Res Ther
(2011) 2(4):34.
[TERAPIA REGENERATIVA EN NEONATOLOGÍA - Dr. Hernán Villalón y cols.]