536
20. Maneenil G, Kemp MW, Kannan PS, Kramer BW, Saito M,
et al, Kallapur SG Oral, nasal and pharyngeal exposure to
lipopolysaccharide causes a fetal inflammatory response in
sheep. (2015) PLoS ONE 10(3):e0119281.
21. Strackx E, Sparnaaij MA, Vlassaks E, Jellema R, Kuypers E, Vles
JS, Kramer BW, Gavilanes AW Lipopolysaccharide-induced
chorioamnionitis causes acute inflammatory changes in the
ovine central nervous system. CNS Neurol Disord Drug Targets
(2015) 14(1):77–84.
22. Kuypers E, Willems MG, Jellema RK, Kemp MW, Newnham
JP, Delhaas T, et al. Responses of the spleen to intraamniotic
lipopolysaccharide exposure in fetal sheep. (2015) Pediatr Res
77(1-1):29–35. doi:10.1038/pr.2014.152.
23. Kunzmann S, Speer CP, Jobe AH, Kramer BW Antenatal
inflammation induced TGF-beta1 but suppressed CTGF in
preterm lungs. Am J Physiol Lung Cell Mol Physiol (2007)
292(1):L223–L231.
24. Martínez-López DG, Funderburg NT, Cerissi A, Rifaie R, Aviles-
Medina L, Llorens-Bonilla BJ, et al. Lipopolysaccharide and
soluble CD14 in cord blood plasma are associated with
prematurity and chorioamnionitis. Pediatr Res (2014) 75(1-
1):67–74.
25. Eklind S, Mallard C, Leverin AL, Gilland E, Blomgren K, Mattsby-
Baltzer I, Hagberg H Bacterial endotoxin sensitizes the
immature brain to hypoxic-ischaemic injury. Eur J Neurosci
(2001) 13(6):1101–1106.
26. O’Reilly M, Thébaud B: Animal models of bronchopulmonary
dysplasia. The term rat models. Am J Physiol Lung Cell Mol
Physiol 2014;307:L948–L958.
27. Berger J, Bhandari V: Animal models of bronchopulmonary
dysplasia. The term mouse models. Am J Physiol Lung Cell Mol
Physiol 2014;307:L936–L947.
28. Balasubramaniam V, Mervis CF, Maxey AM, Markham NE,
Abman SH: Hyperoxia reduces bone marrow, circulating, and
lung endothelial progenitor cells in the developing lung:
implications for the pathogenesis of bronchopulmonary
dysplasia. AmJ Physiol LungCellMol Physiol 2007;292:L1073–
L1084.
29. Yee M, Vitiello PF, Roper JM, Staversky RJ, Wright TW,
McGrath-Morrow SA, et al.: Type II epithelial cells are critical
target for hyperoxia-mediated impairment of postnatal
lung development. Am J Physiol Lung Cell Mol Physiol
2006;291:L1101–L1111.
30. Atochina-Vasserman EN, Bates SR, Zhang P, Abramova
H, Zhang Z, Gonzales L, et al. Early alveolar epithelial
dysfunction promotes lung inflammation in a mouse model
of Hermansky-Pudlak syndrome. Am J Respir Crit Care Med
(2011) 184(4):449–458.
31. Alphonse RS, Vadivel A, Fung M, Shelley WC, Critser PJ, et al:
Existence, functional impairment, and lung repair potential of
endothelial colony-forming cells in oxygen-induced arrested
alveolar growth. Circulation 2014;129: 2144–2157.
32. Popova AP, Bozyk PD, Bentley JK, Linn MJ, Goldsmith AM,
Set al: Isolation of tracheal aspirate mesenchymal stromal
cells predicts bronchopulmonary dysplasia. Pediatrics
2010;126:e1127–e1133.
33. Bozyk PD, Popova AP, Bentley JK, Goldsmith AM, Linn MJ, et al:
Mesenchymal stromal cells from neonatal tracheal aspirates
demonstrate a pattern of lungspecific gene expression. Stem
Cells Dev 2011; 20:1995–2007.
34. Baker CD, Ryan SL, Ingram DA, Seedorf GJ, Abman SH,
Balasubramaniam V: Endothelial colony-forming cells
from preterm infants are increased and more susceptible to
hyperoxia. Am J Respir Crit Care Med 2009;180:454– 461.
35. Baker CD, Balasubramaniam V, Mourani PM, Sontag MK, Black
CP, et al: Cord blood angiogenic progenitor cells are decreased
in bronchopulmonary dysplasia. Eur Respir J 2012;40:1516–
1522.
36. Popova AP, Bozyk PD, Bentley JK, Linn MJ, Goldsmith AM,
et al: Isolation of tracheal aspirate mesenchymal stromal
cells predicts bronchopulmonary dysplasia. Pediatrics
2010;126:e1127–e1133.
37. Thebaud B Angiogenesis in lung development, injury and
repair: implications for chronic lung disease of prematurity.
Neonatology (2007) 91(4): 291–297.
38. Donohue PK, Gilmore MM, Cristofalo E, Wilson RF, Weiner JZ, et
al Inhaled nitric oxide in preterm infants: a systematic review.
Pediatrics (2011) 127(2):e414–e422.
39. Pleasure D, Soulika A, Singh SK, Gallo V, Bannerman P
Inflammation in white matter: clinical and pathophysiological
aspects. Ment Retard Dev Disabil Res Rev (2006) 12(2):141–
146.
40. Favrais G, van de Looij Y, Fleiss B, Ramanantsoa N, Bonnin
P, et al Systemic inflammation disrupts the developmental
program of white matter. Ann Neurol (2011) 70(4):550–565
41. Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, et
al The role of inflammation in perinatal brain injury. Nat Rev
Neurol (2015) 11(4):192–208.
42. Shrivastava K, Chertoff M, Llovera G, Recasens M, Acarin L Short
and long-term analysis and comparison of neurodegeneration
and inflammatory cell response in the ipsilateral and
contralateral hemisphere of the neonatal mouse brain after
hypoxia/ischemia. Neurol Res Int (2012) 2012:781512.
43. Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, et
al The role of inflammation in perinatal brain injury. Nat Rev
Neurol (2015) 11(4):192–208.
44. Sofroniew MV Astrocyte barriers to neurotoxic inflammation.
Nat Rev Neurosci (2015) 16(5):249–263.
45. Brown GC, Neher JJ Inflammatory neurodegeneration and
mechanisms of microglial killing of neurons. Mol Neurobiol
(2010) 41(2-3):242–247.
46. Buntinx M, Moreels M, Vandenabeele F, Lambrichts I, Raus
J, et al (2004) Cytokine-induced cell death in human
oligodendroglial cell lines: I. Synergistic effects of IFN-gamma
and TNFalpha on apoptosis. J Neurosci Res 76(6):834–845.
47. Ramalho-Santos M, Willenbring H On the origin of the term
“stem cell”. Cell Stem Cell (2007) 1(1):35–38.
48. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, et al Multilineage
[REV. MED. CLIN. CONDES - 2016; 27(4) 529-539]