Previous Page  120 / 156 Next Page
Information
Show Menu
Previous Page 120 / 156 Next Page
Page Background

536

20. Maneenil G, Kemp MW, Kannan PS, Kramer BW, Saito M,

et al, Kallapur SG Oral, nasal and pharyngeal exposure to

lipopolysaccharide causes a fetal inflammatory response in

sheep. (2015) PLoS ONE 10(3):e0119281.

21. Strackx E, Sparnaaij MA, Vlassaks E, Jellema R, Kuypers E, Vles

JS, Kramer BW, Gavilanes AW Lipopolysaccharide-induced

chorioamnionitis causes acute inflammatory changes in the

ovine central nervous system. CNS Neurol Disord Drug Targets

(2015) 14(1):77–84.

22. Kuypers E, Willems MG, Jellema RK, Kemp MW, Newnham

JP, Delhaas T, et al. Responses of the spleen to intraamniotic

lipopolysaccharide exposure in fetal sheep. (2015) Pediatr Res

77(1-1):29–35. doi:10.1038/pr.2014.152.

23. Kunzmann S, Speer CP, Jobe AH, Kramer BW Antenatal

inflammation induced TGF-beta1 but suppressed CTGF in

preterm lungs. Am J Physiol Lung Cell Mol Physiol (2007)

292(1):L223–L231.

24. Martínez-López DG, Funderburg NT, Cerissi A, Rifaie R, Aviles-

Medina L, Llorens-Bonilla BJ, et al. Lipopolysaccharide and

soluble CD14 in cord blood plasma are associated with

prematurity and chorioamnionitis. Pediatr Res (2014) 75(1-

1):67–74.

25. Eklind S, Mallard C, Leverin AL, Gilland E, Blomgren K, Mattsby-

Baltzer I, Hagberg H Bacterial endotoxin sensitizes the

immature brain to hypoxic-ischaemic injury. Eur J Neurosci

(2001) 13(6):1101–1106.

26. O’Reilly M, Thébaud B: Animal models of bronchopulmonary

dysplasia. The term rat models. Am J Physiol Lung Cell Mol

Physiol 2014;307:L948–L958.

27. Berger J, Bhandari V: Animal models of bronchopulmonary

dysplasia. The term mouse models. Am J Physiol Lung Cell Mol

Physiol 2014;307:L936–L947.

28. Balasubramaniam V, Mervis CF, Maxey AM, Markham NE,

Abman SH: Hyperoxia reduces bone marrow, circulating, and

lung endothelial progenitor cells in the developing lung:

implications for the pathogenesis of bronchopulmonary

dysplasia. AmJ Physiol LungCellMol Physiol 2007;292:L1073–

L1084.

29. Yee M, Vitiello PF, Roper JM, Staversky RJ, Wright TW,

McGrath-Morrow SA, et al.: Type II epithelial cells are critical

target for hyperoxia-mediated impairment of postnatal

lung development. Am J Physiol Lung Cell Mol Physiol

2006;291:L1101–L1111.

30. Atochina-Vasserman EN, Bates SR, Zhang P, Abramova

H, Zhang Z, Gonzales L, et al. Early alveolar epithelial

dysfunction promotes lung inflammation in a mouse model

of Hermansky-Pudlak syndrome. Am J Respir Crit Care Med

(2011) 184(4):449–458.

31. Alphonse RS, Vadivel A, Fung M, Shelley WC, Critser PJ, et al:

Existence, functional impairment, and lung repair potential of

endothelial colony-forming cells in oxygen-induced arrested

alveolar growth. Circulation 2014;129: 2144–2157.

32. Popova AP, Bozyk PD, Bentley JK, Linn MJ, Goldsmith AM,

Set al: Isolation of tracheal aspirate mesenchymal stromal

cells predicts bronchopulmonary dysplasia. Pediatrics

2010;126:e1127–e1133.

33. Bozyk PD, Popova AP, Bentley JK, Goldsmith AM, Linn MJ, et al:

Mesenchymal stromal cells from neonatal tracheal aspirates

demonstrate a pattern of lungspecific gene expression. Stem

Cells Dev 2011; 20:1995–2007.

34. Baker CD, Ryan SL, Ingram DA, Seedorf GJ, Abman SH,

Balasubramaniam V: Endothelial colony-forming cells

from preterm infants are increased and more susceptible to

hyperoxia. Am J Respir Crit Care Med 2009;180:454– 461.

35. Baker CD, Balasubramaniam V, Mourani PM, Sontag MK, Black

CP, et al: Cord blood angiogenic progenitor cells are decreased

in bronchopulmonary dysplasia. Eur Respir J 2012;40:1516–

1522.

36. Popova AP, Bozyk PD, Bentley JK, Linn MJ, Goldsmith AM,

et al: Isolation of tracheal aspirate mesenchymal stromal

cells predicts bronchopulmonary dysplasia. Pediatrics

2010;126:e1127–e1133.

37. Thebaud B Angiogenesis in lung development, injury and

repair: implications for chronic lung disease of prematurity.

Neonatology (2007) 91(4): 291–297.

38. Donohue PK, Gilmore MM, Cristofalo E, Wilson RF, Weiner JZ, et

al Inhaled nitric oxide in preterm infants: a systematic review.

Pediatrics (2011) 127(2):e414–e422.

39. Pleasure D, Soulika A, Singh SK, Gallo V, Bannerman P

Inflammation in white matter: clinical and pathophysiological

aspects. Ment Retard Dev Disabil Res Rev (2006) 12(2):141–

146.

40. Favrais G, van de Looij Y, Fleiss B, Ramanantsoa N, Bonnin

P, et al Systemic inflammation disrupts the developmental

program of white matter. Ann Neurol (2011) 70(4):550–565

41. Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, et

al The role of inflammation in perinatal brain injury. Nat Rev

Neurol (2015) 11(4):192–208.

42. Shrivastava K, Chertoff M, Llovera G, Recasens M, Acarin L Short

and long-term analysis and comparison of neurodegeneration

and inflammatory cell response in the ipsilateral and

contralateral hemisphere of the neonatal mouse brain after

hypoxia/ischemia. Neurol Res Int (2012) 2012:781512.

43. Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, et

al The role of inflammation in perinatal brain injury. Nat Rev

Neurol (2015) 11(4):192–208.

44. Sofroniew MV Astrocyte barriers to neurotoxic inflammation.

Nat Rev Neurosci (2015) 16(5):249–263.

45. Brown GC, Neher JJ Inflammatory neurodegeneration and

mechanisms of microglial killing of neurons. Mol Neurobiol

(2010) 41(2-3):242–247.

46. Buntinx M, Moreels M, Vandenabeele F, Lambrichts I, Raus

J, et al (2004) Cytokine-induced cell death in human

oligodendroglial cell lines: I. Synergistic effects of IFN-gamma

and TNFalpha on apoptosis. J Neurosci Res 76(6):834–845.

47. Ramalho-Santos M, Willenbring H On the origin of the term

“stem cell”. Cell Stem Cell (2007) 1(1):35–38.

48. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, et al Multilineage

[REV. MED. CLIN. CONDES - 2016; 27(4) 529-539]