Previous Page  103 / 224 Next Page
Information
Show Menu
Previous Page 103 / 224 Next Page
Page Background

817

5. Ruben RJ. Development of the inner ear of a mouse: a

radioautographic study of terminal mitoses. Acta Otolaryngol

1967. (Stockh) [Suppl] 220: 1 - 44.

6. Schuknecht HF. Pathology of the ear. Segunda edición. Editorial

Lea & Febiger, 1993.

7. McFadden SL, Ding D, Jiang H, Salvi RJ. Time course of efferent

fiber and spiral ganglion cell degeneration following complete

hair cell loss in the chinchilla. Brain Res 2004. 997(1): 40 - 51.

8. McFadden SL, Ding D, Jiang H, Woo JM, Salvi RJ. Chinchilla

models of selective cochlear hair cell loss. Hear Res 2002.

174(1-2):

230 - 238.

9. Raphael Y, Kim YH, Osumi Y, Izumikawa M. Non-sensory cells

in the deafened organ of Corti: approaches for repair. Int J Dev

Biol. 2007. 51(6-7):649-54.

10. Lowenheim H, Furnes DN, Kil J, Zinn C, Gultig K, Fero ML, et

al. Gene disruption of p27Kip1 allows cells proliferation in

the postnatal and adult organ of Corti. Proc Natl Acad Sci USA

1999. 96: 4084 - 4088.

11. Minoda R, Izumikawa M, Kawamoto K, Zhang H, Raphael Y.

Manipulating cell cycle regulation in the mature cochlea. Hear

2007. 232: 44 - 52.

12. Cai T, Seymour ML, Zhang H, Pereira FA, Groves AK. Conditional

deletion of Atoh1 reveals distinct critical periods for survival

and function of hair cells in the organ of Corti. J Neurosci. 2013.

33(24):10110-22. doi: 10.1523/JNEUROSCI.5606-12.2013.

13. Daudet N, Lewis J. Two contrasting roles for Notch activity

in chick inner ear development: specification of prosensory

patches and lateral inhibition of hair-cell differentiation.

Development 2005. 132(3): 541 - 551.

14. Forge A, Li L, Corwin JT, Nevill G. Ultrastructural evidence for

hair cell regeneration in the mamalian inner ear. Science

1993. 259(5101): 1616 - 1619.

15. Kelley MW. Regulation of cell fate in the sensory epithelia of the

inner ear. Nat Rev Neuroscience 2006. 7: 837 - 849.

16. Oshima K, Shin K, Diensthuber M, Peng AW, Ricci AJ, Heller

S. Mechanosensitive hair cell-like cells from embryonic and

induced pluripotent stem cells. Cell. 2010. 141(4):704-16.

doi: 10.1016/j.cell.2010.03.035.

17. Jeon SJ, Oshima K, Heller S, Edge AS. Bone marrowmesenchymal

stem cells are progenitors in vitro for inner ear hair cells. Mol

Cell Neurosci. 2007. 34(1):59-68.

18. Parker MA, Corliss DA, Gray B, Anderson JK, Bobbin RP, Snyder

EY, Cotanche DA. Neural stem cells injected into the sound-

damaged cochlea migrate throughout the cochlea and express

markers of hair cells, supporting cells, and spiral ganglion cells.

Hear Res. 2007. 232(1-2):29-43.

19. Hu Z, Andäng M, Ni D, Ulfendahl M. Neural cograft stimulates

the survival and differentiation of embryonic stem cells in the

adult mammalian auditory system. Brain Res. 2005. 1051(1-

2):137-44.

20. Zhao LD, Li L, Wu N, Li DK, Ren LL, Guo WW, Et al. 2013.

Migration and differentiation of mouse embryonic stem cells

transplanted into mature cochlea of rats with aminoglycoside-

induced hearing loss. Acta Otolaryngol. 2013 Feb;133(2):136-

43. doi: 10.3109/00016489.2012.720029.

21. Coleman B, Hardman J, Coco A, Epp S, de Silva M, Crook J,

Shepherd R. Fate of embryonic stem cells transplanted into

the deafened mammalian cochlea. Cell Transplant. 2006.

15(5):369-80.

22. Ito J, Kojima K, Kawaguchi S. Survival of neural stem cells in the

cochlea. Acta Otolaryngol. 2001. 121(2):140-2.

23. Hildebrand MS, Dahl HH, Hardman J, Coleman B, Shepherd

RK, de Silva MG. Survival of partially differentiated mouse

embryonic stem cells in the scala media of the guinea pig

cochlea. J Assoc Res Otolaryngol. 2005. 6(4):341-54.

24. Park YH, Wilson KF, Ueda Y, Tung Wong H, Beyer LA, Swiderski

DL, Et al. Conditioning the cochlea to facilitate survival and

integration of exogenous cells into the auditory epithelium.

Mol Ther. 2014. 22(4):873-80. doi: 10.1038/mt.2013.292.

25. Corrales CE, Pan L, Li H, Liberman MC, Heller S, Edge AS.

Engraftment and differentiation of embryonic stem cell-

derived neural progenitor cells in the cochlear nerve trunk:

growth of processes into the organ of Corti. J Neurobiol.2006.

66(13):1489-500.

26. Chen W, Jongkamonwiwat N, Abbas L, Eshtan SJ, Johnson

SL, Kuhn S, Et al. Restoration of auditory evoked responses

by human ES-cell-derived otic progenitors. Nature. 2012.

490(7419):278-82. doi: 10.1038/nature11415..

27. Okano T, Nakagawa T, Endo T, Kim TS, Kita T, Tamura T, Et al.

Engraftment of embryonic stem cell-derived neurons into the

cochlear modiolus. Neuroreport. 2005. 16(17):1919-22.

28. Cotanche DA. Regeneration of hair cell stereociliary bundles in

the chick cochlea following severe acoustic trauma. Hear Res

1987. 30(2-3): 181 - 195.

29. Corwin JT, Cotanche DA. Regeneration of sensory hair cells after

acoustic trauma. Science 1988. 240(4860): 1772 - 1774.

30. Ryals BM, Rubel EW. Hair cell regeneration after acoustic

trauma in adult Coturnix quail. Science 1988. 240: 1774 -

1776.

31. Ono K, Nakagawa T, Kojima K, Matsumoto M, Kawauchi T,

Hoshino M, Ito J.. Silencing p27 reverses post-mitotic state of

supporting cells in neonatal mouse cochleae. Molecular and

Cellular Neuroscience 2009. 42: 391–398.

32. Maass JC, Berndt FA, Cánovas J, Kukuljan M. p27Kip1

knockdown induces proliferation in the organ of Corti in

culture after efficient shRNA lentiviral transduction. J Assoc Res

Otolaryngol 2013. 14(4): 495 - 508.

33. Oesterle EC, Chien WM, Campbell S, Nellimarla P, Fero ML.

p27Kip1 is required to maintain proliferative quiescence in

the adult cochlea and pituitary. Cell Cycle 2011. 10: 1237 -

1248.

34. Kanzaki S, Beyer LA, Swiderski DL, Izumikawa M, Stöver T,

Kawamoto K, Raphael Y. p27(Kip1) deficiency causes organ of

Corti pathology and hearing loss. Hear Res 2006. 214(1-2):

28 - 36.

35. Kiernan AE, Cordes R, Kopan R, Gossler A, Gridley T. The Notch

ligands DLL1 and JAG2 act synergistically to regulate hair

[Avances en regeneración auditiva. Estado actual y perspectivas futuras - Dr. Juan Cristóbal Maass PhD y cols.]