Previous Page  74 / 144 Next Page
Information
Show Menu
Previous Page 74 / 144 Next Page
Page Background

354

14(10):1037-53

7. Narayanan L, Murray AD. (2016). What can imaging tell us

about cognitive impairment and dementia? World J Radiol.

28; 8(3): 240-54.

8. Jack CR Jr, Knopman DS, Jagust WJ, et al. (2013) Tracking

pathophysiological processes in Alzheimer’s disease: an

updated hypothetical model of dynamic biomarkers. Lancet

Neurol; 12: 207–16

9. Dubois B, Feldman HH, Jacova C, et al. (2007) Research criteria

for the diagnosis of Alzheimer’s disease: revising the NINCDS–

ADRDA criteria. Lancet Neurol; 6: 734-46

10. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR,

Jr., Kawas CH, et al. (2011). The diagnosis of dementia due

to Alzheimer’s disease: Recommendations from the National

Institute on Aging and the Alzheimer’s Association workgroup.

Alzheimer’s & Dementia 1–7

11. Barkhof F, Fox NC, Bastos-Leite AJ, Scheltens P. (2011)

Neuroimaging

in

Dementia.

Springer-Verlag

Berlin

Heidelberg.

12. Pasquier F, Leys D, Weerts JG, Mounier-Vehier F, Barkhof F,

Scheltens P. (1997). Inter- and intraobserver reproducibility

of cerebral atrophy assessment on MRI scans with hemispheric

infarcts. Eur. Neurol. 36 (5): 268-72

13. Koedam EL, Lehmann M, van der Flier WM, Scheltens P,

Pijnenburg YA, Fox N, et al. (2011) Visual assessment of

posterior atrophy development of a MRI rating scale. Eur

Radiol. 21(12):2618-25

14. Prins ND, Scheltens P. (2015) White matter hyperintensities,

cognitive impairment and dementia: an update. Nat. Rev.

Neurol. 11, 157–165

15. Brickman AM, Zahodne LB, Guzman VA, Narkhede A, Meier IB,

Griffith EY, et al. (2015) Reconsidering harbingers of dementia:

progression of parietal lobe white matter hyperintensities

predicts Alzheimer’s disease incidence. Neurobiol. Aging 36,

27–32

16. Debette, S., Markus, H. S. (2010). The clinical importance of

white matter hyperintensities on brain magnetic resonance

imaging: systematic review and meta-analysis. BMJ 341,

c3666

17. Prins, N. D., van Dijk EJ, den Heijer T, Vermeer SE, Jolles J,

Koudstaal PJ, et al. (2005) Cerebral small-vessel disease and

decline in information processing speed, executive function

and memory. Brain 128, 2034–2041

18. Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ,

Breteler MM. (2003). Silent brain infarcts and the risk of

dementia and cognitive decline. N. Engl. J. Med. 348, 1215–

1222

19. Lee S, Viqar F, Zimmerman ME, Narkhede A, Tosto G, Benzinger

TL, et al. (2016) White matter hyperintensities are a core

feature of Alzheimer’s disease: Evidence from the Dominantly

Inherited Alzheimer Network. Ann Neurol. Mar 26

20. Fazekas F, Chawluk JB, Zimmerman A, June M. MR Signal

abnormalities at 1. 5 T in Alzheimer’s dementia and normal

aging deficiency. AJR 1987; 149: 351-356.

21. Harper L, Fumagalli GG, Barkhof P, Scheltens P, O’Brien JT,

Bouwman F, et al. (2016) MRI visual rating scales in the

diagnosis of dementia: evaluation in 184 post-mortem

confirmed cases. Brain. 139(Pt 4):1211-25.

22. Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M,

Sjögren M, et al. A new rating scale for age-related white

matter changes applicable to MRI and CT. Stroke 2001;

32(6): 1318-22.

23. Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2): 774-781.

24. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa

E, et al. 2004. Thinning of the cerebral cortex in aging. Cereb

Cortex ; 14(7): 721-30.

25. Walhovd KB, Fjell AM, Reinvang I, Lundervold A, Dale AM Quinn

BT, et al. (2005). Neuroanatomical aging: Universal but not

uniform. Neurobiology of Aging 26 (2005) 1279–1282

26. Walhovd KB, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz

N, et al. (2011). Consistent neuroanatomical age-related

volume differences across multiple samples. Neurobiol Aging,

32(5): 916-932.

27. Goodro, M., Sametia, M., Patenaude, B., Fein, G. (2012). Age

effect on subcortical structures in healthy adults. Psychiatry

Res; 203(1): 38–45

28. Jernigan, T.L., Gamst, A.C. (2005). Changes in volume with

age-consistency and interpretation of observed effects.

Neurobiology of Aging; 26; 1271–1274

29. Dickerson BC, Feczko E, Augustinack JC, Pacheco J, Morris

JC, Fischl B, Buckner RL. (2009). Differential effects of aging

and Alzheimer’s disease on medial temporal lobe cortical

thickness and surface area. Neurobiol Aging; 30(3): 432-40.

30. Du AT, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML,

Rankin K, et al. (2007). Different regional patterns of cortical

thinning in Alzheimer’s disease and frontotemporal dementia.

Brain; 130(Pt 4): 1159-1166.

31. Möller C, Hafkemeijer A, Pijnenburg YA, Rombouts SA, van

der Grond J, Dopper E, et al. (2016). Different patterns of

cortical gray matter loss over time in behavioral variant

frontotemporal dementia and Alzheimer’s disease. Neurobiol

Aging; 38: 21-31.

32. Enzinger C, Fazekas F, Matthews PM, Ropele S, Schmidt H,

Smith S, Schmidt R. (2005). Risk factors for progression of

brain atrophy in aging: six-year follow-up of normal subjects.

Neurology; 64(10): 1704-11.

33. Fotenos AF, Snyder AZ, Girton LE, Morris JC, Buckner RL. (2005).

Normative estimates of cross-sectional and longitudinal brain

volume decline in aging and AD. Neurology; 64(6): 1032-9.

34. Liu RS, Lemieux L, Bell GS, Sisodiya SM, Shorvon SD, Sander

JW, Duncan JS. (2003). A longitudinal study of brain

morphometrics using quantitative magnetic resonance

imaging and difference image analysis. Neuroimage; 20(1):

22-33.

35. Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC,

Buckner RL. (2007). Open Access Series of Imaging Studies

(OASIS): Cross-Sectional MRI Data in Young, Middle Aged,

Nondemented, and Demented Older Adults. Journal of

[REV. MED. CLIN. CONDES - 2016; 27(3) 338-356]