354
14(10):1037-53
7. Narayanan L, Murray AD. (2016). What can imaging tell us
about cognitive impairment and dementia? World J Radiol.
28; 8(3): 240-54.
8. Jack CR Jr, Knopman DS, Jagust WJ, et al. (2013) Tracking
pathophysiological processes in Alzheimer’s disease: an
updated hypothetical model of dynamic biomarkers. Lancet
Neurol; 12: 207–16
9. Dubois B, Feldman HH, Jacova C, et al. (2007) Research criteria
for the diagnosis of Alzheimer’s disease: revising the NINCDS–
ADRDA criteria. Lancet Neurol; 6: 734-46
10. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR,
Jr., Kawas CH, et al. (2011). The diagnosis of dementia due
to Alzheimer’s disease: Recommendations from the National
Institute on Aging and the Alzheimer’s Association workgroup.
Alzheimer’s & Dementia 1–7
11. Barkhof F, Fox NC, Bastos-Leite AJ, Scheltens P. (2011)
Neuroimaging
in
Dementia.
Springer-Verlag
Berlin
Heidelberg.
12. Pasquier F, Leys D, Weerts JG, Mounier-Vehier F, Barkhof F,
Scheltens P. (1997). Inter- and intraobserver reproducibility
of cerebral atrophy assessment on MRI scans with hemispheric
infarcts. Eur. Neurol. 36 (5): 268-72
13. Koedam EL, Lehmann M, van der Flier WM, Scheltens P,
Pijnenburg YA, Fox N, et al. (2011) Visual assessment of
posterior atrophy development of a MRI rating scale. Eur
Radiol. 21(12):2618-25
14. Prins ND, Scheltens P. (2015) White matter hyperintensities,
cognitive impairment and dementia: an update. Nat. Rev.
Neurol. 11, 157–165
15. Brickman AM, Zahodne LB, Guzman VA, Narkhede A, Meier IB,
Griffith EY, et al. (2015) Reconsidering harbingers of dementia:
progression of parietal lobe white matter hyperintensities
predicts Alzheimer’s disease incidence. Neurobiol. Aging 36,
27–32
16. Debette, S., Markus, H. S. (2010). The clinical importance of
white matter hyperintensities on brain magnetic resonance
imaging: systematic review and meta-analysis. BMJ 341,
c3666
17. Prins, N. D., van Dijk EJ, den Heijer T, Vermeer SE, Jolles J,
Koudstaal PJ, et al. (2005) Cerebral small-vessel disease and
decline in information processing speed, executive function
and memory. Brain 128, 2034–2041
18. Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ,
Breteler MM. (2003). Silent brain infarcts and the risk of
dementia and cognitive decline. N. Engl. J. Med. 348, 1215–
1222
19. Lee S, Viqar F, Zimmerman ME, Narkhede A, Tosto G, Benzinger
TL, et al. (2016) White matter hyperintensities are a core
feature of Alzheimer’s disease: Evidence from the Dominantly
Inherited Alzheimer Network. Ann Neurol. Mar 26
20. Fazekas F, Chawluk JB, Zimmerman A, June M. MR Signal
abnormalities at 1. 5 T in Alzheimer’s dementia and normal
aging deficiency. AJR 1987; 149: 351-356.
21. Harper L, Fumagalli GG, Barkhof P, Scheltens P, O’Brien JT,
Bouwman F, et al. (2016) MRI visual rating scales in the
diagnosis of dementia: evaluation in 184 post-mortem
confirmed cases. Brain. 139(Pt 4):1211-25.
22. Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M,
Sjögren M, et al. A new rating scale for age-related white
matter changes applicable to MRI and CT. Stroke 2001;
32(6): 1318-22.
23. Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2): 774-781.
24. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa
E, et al. 2004. Thinning of the cerebral cortex in aging. Cereb
Cortex ; 14(7): 721-30.
25. Walhovd KB, Fjell AM, Reinvang I, Lundervold A, Dale AM Quinn
BT, et al. (2005). Neuroanatomical aging: Universal but not
uniform. Neurobiology of Aging 26 (2005) 1279–1282
26. Walhovd KB, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz
N, et al. (2011). Consistent neuroanatomical age-related
volume differences across multiple samples. Neurobiol Aging,
32(5): 916-932.
27. Goodro, M., Sametia, M., Patenaude, B., Fein, G. (2012). Age
effect on subcortical structures in healthy adults. Psychiatry
Res; 203(1): 38–45
28. Jernigan, T.L., Gamst, A.C. (2005). Changes in volume with
age-consistency and interpretation of observed effects.
Neurobiology of Aging; 26; 1271–1274
29. Dickerson BC, Feczko E, Augustinack JC, Pacheco J, Morris
JC, Fischl B, Buckner RL. (2009). Differential effects of aging
and Alzheimer’s disease on medial temporal lobe cortical
thickness and surface area. Neurobiol Aging; 30(3): 432-40.
30. Du AT, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML,
Rankin K, et al. (2007). Different regional patterns of cortical
thinning in Alzheimer’s disease and frontotemporal dementia.
Brain; 130(Pt 4): 1159-1166.
31. Möller C, Hafkemeijer A, Pijnenburg YA, Rombouts SA, van
der Grond J, Dopper E, et al. (2016). Different patterns of
cortical gray matter loss over time in behavioral variant
frontotemporal dementia and Alzheimer’s disease. Neurobiol
Aging; 38: 21-31.
32. Enzinger C, Fazekas F, Matthews PM, Ropele S, Schmidt H,
Smith S, Schmidt R. (2005). Risk factors for progression of
brain atrophy in aging: six-year follow-up of normal subjects.
Neurology; 64(10): 1704-11.
33. Fotenos AF, Snyder AZ, Girton LE, Morris JC, Buckner RL. (2005).
Normative estimates of cross-sectional and longitudinal brain
volume decline in aging and AD. Neurology; 64(6): 1032-9.
34. Liu RS, Lemieux L, Bell GS, Sisodiya SM, Shorvon SD, Sander
JW, Duncan JS. (2003). A longitudinal study of brain
morphometrics using quantitative magnetic resonance
imaging and difference image analysis. Neuroimage; 20(1):
22-33.
35. Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC,
Buckner RL. (2007). Open Access Series of Imaging Studies
(OASIS): Cross-Sectional MRI Data in Young, Middle Aged,
Nondemented, and Demented Older Adults. Journal of
[REV. MED. CLIN. CONDES - 2016; 27(3) 338-356]