355
Cognitive Neuroscience, 19: 1498-1507.
36. Ogawa S, Lee TM, Kay AR, Tank DW. (1990). Brain magnetic
resonance imaging with contrast dependent on blood
oxygenation. Proc Natl Acad Sci U S A; 87(24): 9868-72.
37. Faro SH, Mohamed FB (eds). Functional MRI. Basic Principles
and Clinical Applications. 2006 Springer Science+Business
Media, Inc.
38. Jezzard P, Matthews PM, Smith. Functional MRI: An
Introduction to Methods. Oxford Medical Publications, 2001.
39. Donaldson, D., Bucknar, R. (2001). Effective paradigm design.
In P.Jezzard, P. M. Matthews, & S. M. Smith (Eds.), Functional
MRI: An introduction to methods (pp. 177-195). New York:
Oxford University Press Inc.
40. Buckner, R. Event-Related fMRI and the Hemodynamic
Response. (1998a). Human Brain Mapping. 6. 373-377.
41. Buckner, R., Dale, A., Rosen, B. Event-Related functional MRI:
Past, Present and Future. (1998b). Proc. Natl. Acad. Sci. USA.
95. 773-780.
42. Rosales R., Rojas G, Gálvez M, Gallardo P, Badilla L. (2006).
Obtención de mapas corticales de áreas motora y visual, con
resonancia magnética cerebral funcional. Revista Chilena de
Radiología; 12(4); 164-169
43. Golby AJ, Poldrack RA, Brewer JB, Spencer D, Desmond JE, Aron
AP, Gabrieli JD. (2001). Material-specific lateralization in the
medial temporal lobe and prefrontal cortex during memory
encoding. Brain; 124(Pt 9): 1841-54.
44. Rabin ML, Narayan VM, Kimberg DY, Casasanto DJ, Glosser G,
Tracy JI, French JA, Sperling MR, Detre JA. (2004). Functional
MRI predicts post-surgical memory following temporal
lobectomy. Brain; 127(Pt 10): 2286-98.
45. Morcom AM, Good CD, Frackowiak RS, Rugg MD. (2003).
Age effects on the neural correlates of successful memory
encoding. Brain; 126(Pt 1): 213-229.
46. Rombouts SA, Barkhof F, Veltman DJ, Machielsen WC, Witter
MP, Bierlaagh MA, Lazeron RH, Valk J, Scheltens P. (2000).
Functional MR imaging in Alzheimer’s disease during memory
encoding. AJNR Am J Neuroradiol; 21(10): 1869-75.
47. Rombouts SA, van Swieten JC, Pijnenburg YA, Goekoop R,
Barkhof F, Scheltens P. (2003). Loss of frontal fMRI activation
in early frontotemporal dementia compared to early AD.
Neurology; 60(12): 1904-8.
48. van den Heuvel MP, Hulshoff Pol HE. (2010). Exploring the
brain network: a review on resting-state fMRI functional
connectivity. Eur Neuropsychopharmacol; 20(8): 519-34.
49. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D,
Hollinshead M, et al. (2011). The organization of the human
cerebral cortex estimated by intrinsic functional connectivity.
J Neurophysiol; 106(3): 1125-65.
50. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME.
(2006). Spontaneous neuronal activity distinguishes human
dorsal and ventral attention systems. Proc Natl Acad Sci U S A;
103(26): 10046-51.
51. Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR,
Raichle ME, Buckner RL. (2006). Coherent spontaneous
activity identifies a hippocampal-parietal memory network.
J Neurophysiol; 96(6): 3517-31
52. Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK,
Dosenbach RA, et al. (2007). Distinct brain networks for
adaptive and stable task control in humans. Proc Natl Acad
Sci U S A; 104(26): 11073-8
53. Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL. (2008).
Evidence for a frontoparietal control system revealed by
intrinsic functional connectivity. J Neurophysiol; 100(6):
3328-42.
54. Buckner RL, Andrews-Hanna JR, Schacter DL. (2008). The
brain’s default network: anatomy, function, and relevance to
disease. Ann N Y Acad Sci; 1124: 1-38.
55. Greicius MD, Krasnow B, Reiss AL, Menon V. (2003). Functional
connectivity in the resting brain: a network analysis of the
default mode hypothesis. Proc Natl Acad Sci U S A; 100(1):
253-8
56. Sorg C, Riedl V, Mühlau M, Calhoun VD, Eichele T, Läer L, et
al. (2007). Selective changes of resting-state networks in
individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci
U S A; 104(47): 18760-5.
57. Greicius MD, Srivastava G, Reiss AL, Menon V. (2004). Default-
mode network activity distinguishes Alzheimer’s disease from
healthy aging: evidence from functional MRI. Proc Natl Acad
Sci U S A; 101(13): 4637-42.
58. Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE,
Ivnik RJ et al (2009). Mild cognitive impairment: ten years
later. Arch Neurol; 66 (12):1447–1455.
59. Cerami C, Della Rosa PA, Magnani G, Santangelo R, Marcone
A, Cappa SF et al (2015). Brain metabolic maps in Mild
Cognitive Impairment predict heterogeneity of progression to
dementia. NeuroImage Clinical; (7):187–194.
60. Kato T, Inui Y, Nakamura A, Ito K. Brain fluorodeoxyglucose
(FDG) PET in dementia. Ageing Res Rev 2016 Feb 11. pii:
S1568-1637(16)30011-3. doi: 10.1016/j.arr.2016.02.003.
61. Hoffman JM, Welsh-Bohmer KA, Hanson M, Crain B, Hulette C,
Earl N, Coleman RE (2000). FDG PET Imaging in Patients
with Pathologically Verified Dementia. J Nucl Med;
41:1920-8.
62. Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE,
Barbas NR, et al (2007). FDG-PET improves accuracy in
distinguishing frontotemporal dementia and Alzheimer’s
disease. Brain; 130, 2616-35.
63. Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani
G, et al (2008). Multicenter Standardized 18F-FDG PET
Diagnosis of Mild Cognitive Impairment, Alzheimer’s Disease,
and Other Dementias. J Nucl Med; 49:390–8.
64. Serag A, Wenzelb F, Thielec F, Buchertd R and Youngb S.
Optimal feature selection for automated classification of
FDG-PET in patients with suspected dementia. SPIE Medical
Imaging 2009, Orlando (FL), USA 2009.
65. Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC,
et al (2012). Clinical and Biomarker Changes in Dominantly
Inherited Alzheimer’s Disease. N Engl J Med; 367:795-804.
[Neuroimágenes en Demencias - Ing. Gonzalo Rojas C. y cols.]