Previous Page  75 / 144 Next Page
Information
Show Menu
Previous Page 75 / 144 Next Page
Page Background

355

Cognitive Neuroscience, 19: 1498-1507.

36. Ogawa S, Lee TM, Kay AR, Tank DW. (1990). Brain magnetic

resonance imaging with contrast dependent on blood

oxygenation. Proc Natl Acad Sci U S A; 87(24): 9868-72.

37. Faro SH, Mohamed FB (eds). Functional MRI. Basic Principles

and Clinical Applications. 2006 Springer Science+Business

Media, Inc.

38. Jezzard P, Matthews PM, Smith. Functional MRI: An

Introduction to Methods. Oxford Medical Publications, 2001.

39. Donaldson, D., Bucknar, R. (2001). Effective paradigm design.

In P.Jezzard, P. M. Matthews, & S. M. Smith (Eds.), Functional

MRI: An introduction to methods (pp. 177-195). New York:

Oxford University Press Inc.

40. Buckner, R. Event-Related fMRI and the Hemodynamic

Response. (1998a). Human Brain Mapping. 6. 373-377.

41. Buckner, R., Dale, A., Rosen, B. Event-Related functional MRI:

Past, Present and Future. (1998b). Proc. Natl. Acad. Sci. USA.

95. 773-780.

42. Rosales R., Rojas G, Gálvez M, Gallardo P, Badilla L. (2006).

Obtención de mapas corticales de áreas motora y visual, con

resonancia magnética cerebral funcional. Revista Chilena de

Radiología; 12(4); 164-169

43. Golby AJ, Poldrack RA, Brewer JB, Spencer D, Desmond JE, Aron

AP, Gabrieli JD. (2001). Material-specific lateralization in the

medial temporal lobe and prefrontal cortex during memory

encoding. Brain; 124(Pt 9): 1841-54.

44. Rabin ML, Narayan VM, Kimberg DY, Casasanto DJ, Glosser G,

Tracy JI, French JA, Sperling MR, Detre JA. (2004). Functional

MRI predicts post-surgical memory following temporal

lobectomy. Brain; 127(Pt 10): 2286-98.

45. Morcom AM, Good CD, Frackowiak RS, Rugg MD. (2003).

Age effects on the neural correlates of successful memory

encoding. Brain; 126(Pt 1): 213-229.

46. Rombouts SA, Barkhof F, Veltman DJ, Machielsen WC, Witter

MP, Bierlaagh MA, Lazeron RH, Valk J, Scheltens P. (2000).

Functional MR imaging in Alzheimer’s disease during memory

encoding. AJNR Am J Neuroradiol; 21(10): 1869-75.

47. Rombouts SA, van Swieten JC, Pijnenburg YA, Goekoop R,

Barkhof F, Scheltens P. (2003). Loss of frontal fMRI activation

in early frontotemporal dementia compared to early AD.

Neurology; 60(12): 1904-8.

48. van den Heuvel MP, Hulshoff Pol HE. (2010). Exploring the

brain network: a review on resting-state fMRI functional

connectivity. Eur Neuropsychopharmacol; 20(8): 519-34.

49. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D,

Hollinshead M, et al. (2011). The organization of the human

cerebral cortex estimated by intrinsic functional connectivity.

J Neurophysiol; 106(3): 1125-65.

50. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME.

(2006). Spontaneous neuronal activity distinguishes human

dorsal and ventral attention systems. Proc Natl Acad Sci U S A;

103(26): 10046-51.

51. Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR,

Raichle ME, Buckner RL. (2006). Coherent spontaneous

activity identifies a hippocampal-parietal memory network.

J Neurophysiol; 96(6): 3517-31

52. Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK,

Dosenbach RA, et al. (2007). Distinct brain networks for

adaptive and stable task control in humans. Proc Natl Acad

Sci U S A; 104(26): 11073-8

53. Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL. (2008).

Evidence for a frontoparietal control system revealed by

intrinsic functional connectivity. J Neurophysiol; 100(6):

3328-42.

54. Buckner RL, Andrews-Hanna JR, Schacter DL. (2008). The

brain’s default network: anatomy, function, and relevance to

disease. Ann N Y Acad Sci; 1124: 1-38.

55. Greicius MD, Krasnow B, Reiss AL, Menon V. (2003). Functional

connectivity in the resting brain: a network analysis of the

default mode hypothesis. Proc Natl Acad Sci U S A; 100(1):

253-8

56. Sorg C, Riedl V, Mühlau M, Calhoun VD, Eichele T, Läer L, et

al. (2007). Selective changes of resting-state networks in

individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci

U S A; 104(47): 18760-5.

57. Greicius MD, Srivastava G, Reiss AL, Menon V. (2004). Default-

mode network activity distinguishes Alzheimer’s disease from

healthy aging: evidence from functional MRI. Proc Natl Acad

Sci U S A; 101(13): 4637-42.

58. Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE,

Ivnik RJ et al (2009). Mild cognitive impairment: ten years

later. Arch Neurol; 66 (12):1447–1455.

59. Cerami C, Della Rosa PA, Magnani G, Santangelo R, Marcone

A, Cappa SF et al (2015). Brain metabolic maps in Mild

Cognitive Impairment predict heterogeneity of progression to

dementia. NeuroImage Clinical; (7):187–194.

60. Kato T, Inui Y, Nakamura A, Ito K. Brain fluorodeoxyglucose

(FDG) PET in dementia. Ageing Res Rev 2016 Feb 11. pii:

S1568-1637(16)30011-3. doi: 10.1016/j.arr.2016.02.003.

61. Hoffman JM, Welsh-Bohmer KA, Hanson M, Crain B, Hulette C,

Earl N, Coleman RE (2000). FDG PET Imaging in Patients

with Pathologically Verified Dementia. J Nucl Med;

41:1920-8.

62. Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE,

Barbas NR, et al (2007). FDG-PET improves accuracy in

distinguishing frontotemporal dementia and Alzheimer’s

disease. Brain; 130, 2616-35.

63. Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani

G, et al (2008). Multicenter Standardized 18F-FDG PET

Diagnosis of Mild Cognitive Impairment, Alzheimer’s Disease,

and Other Dementias. J Nucl Med; 49:390–8.

64. Serag A, Wenzelb F, Thielec F, Buchertd R and Youngb S.

Optimal feature selection for automated classification of

FDG-PET in patients with suspected dementia. SPIE Medical

Imaging 2009, Orlando (FL), USA 2009.

65. Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC,

et al (2012). Clinical and Biomarker Changes in Dominantly

Inherited Alzheimer’s Disease. N Engl J Med; 367:795-804.

[Neuroimágenes en Demencias - Ing. Gonzalo Rojas C. y cols.]