Previous Page  49 / 154 Next Page
Information
Show Menu
Previous Page 49 / 154 Next Page
Page Background

375

REFERENCIAS BIBLIOGRÁFICAS

1. Louis D., Perry A., Reifenbergger G., et al. The 2016 WHO

classification of tumours of the central nervous system: a

summary. Acta Neuropathologica, 2016; 131: 803–820.

http://doi.org/10.1007/s00401-016-1545-1

2. Wen P., Macdonald D, Reardon D. et al. Updated Response

Assessment Criteria for High-Grade Gliomas: Response

Assessment in Neuro-Oncology Working Group. Journal of

Clinical Oncology 2010; 28(11): 1963–1972. http://doi.

org/10.1200/JCO.2009.26.3541

3. Jain R., Scarpace L., Ellika S., Torcuator R., Schultz L. R.,

Hearshen

D.et

al. Imaging response criteria for recurrent

gliomas treated with bevacizumab: Role of diffusion weighted

imaging as an imaging biomarker. Journal of Neuro-Oncology

2010, 96(3), 423–431.

http://doi.org/10.1007/s11060-

009-9981-6

4. Sorensen A. A “vascular normalization index” as potential

mechanistic biomarker to predict survival after a single dose

of cediranib in recurrent glioblastoma patients. Cancer Res

2009; 69: 5296–5300.

http://doi.org/10.1158/0008-

5472.CAN-09-0814

5. White N., McDonald C., Farid N., Kuperman J., Kesari S., Dale, A..

Improved Conspicuity and Delineation of High-Grade Primary

and Metastatic Brain Tumors Using “Restriction Spectrum

Imaging”: Quantitative Comparison with High B-Value DWI

and ADC. American Journal of Neuroradiology 2013; 34(5):

958–964.

http://doi.org/10.3174/ajnr.A3327

6. McDonald C., White N., Farid N., et al. Recovery of White

Matter Tracts in Regions of Peritumoral FLAIR Hyperintensity

with Use of Restriction Spectrum Imaging. American Journal

of Neuroradiology 2013; 34(6): 1157–1163. http://doi.

org/10.3174/ajnr.A3372

7. Majós C., AguileraC., Alonso J. ProtonMR spectroscopy improves

discrimination between tumor and pseudotumoral lesion in

solid brain masses. AJNR. American Journal of Neuroradiology

(2009); 30(3): 544–551.

http://doi.org/10.3174/ajnr.A1392

8. Cha S., Lupo J., Chen M. Differentiation of glioblastoma

multiforme and single brain metastasis by peak height and

percentage of signal intensity recovery derived from dynamic

susceptibility-weighted contrast-enhanced perfusion MR

imaging. AJNR. American Journal of Neuroradiology 2007;

28(6): 1078–1084.

http://doi.org/10.3174/ajnr.A0484

9. Server A. Proton magnetic resonance spectroscopy in the

distinction of high grade cerebral gliomas from single

metastatic brain tumours. Acta Radiol 2010; 51: 316–325.

http://doi.org/10.3109/02841850903482901

10. Blasel S., Jurcoane A., Franz K., Morawe G., Pellikan S.,

Hattingen E.. Elevated peritumoural rCBV values as a mean

to differentiate metastases from high-grade gliomas. Acta

Neurochirurgica 2010; 152(11): 1893–1899. http://doi.

org/10.1007/s00701-010-0774-7

11. Arvinda H.. Glioma grading: sensitivity, specificity, positive and

negative predictive values of diffusion and perfusion imaging.

J. Neurooncol. 2009; 94: 87–96.

http://doi.org/10.1007/

s11060-009-9807-6

12. LawM., Yang S., Wang H. Glioma grading: sensitivity, specificity,

and predictive values of perfusion MR imaging and proton

MR spectroscopic imaging compared with conventional MR

imaging. AJNR. American Journal of Neuroradiology 2003,

24(10), 1989–1998.

13. Crisi G., Orsingher L., Filice S.. Lipid and macromolecules

quantitation in differentiating glioblastoma from solitary

metastasis: a short-echo time single-voxel magnetic

resonance spectroscopy study at 3 T. Journal of Computer

Assisted Tomography 2013; 37(2): 265–271. http://doi.

org/10.1097/RCT.0b013e318282d2ba

14. Kang Y. Gliomas: histogram analysis of apparent diffusion

coefficient maps with standard- or high-b-value diffusion

weighted MR imaging correlation with tumour grade.

Radiology 2011; 261: 882–890.

http://doi.org/10.1148/

radiol.11110686

15. Jolapara, M.. Can diffusion tensor metrics help in

preoperatively grading of diffusely infiltrating astrocytomas?

A retrospective study of 36 cases. Neuroradiology 2011; 53:

63–68.

http://doi.org/10.1007/s00234-010-0761-y

16. Di Costanzo A., Scarabino T., Trojsi F. Multiparametric 3T MR

approach to the assessment of cerebral gliomas: tumor extent

and malignancy. Neuroradiology 2006; 48(9): 622–631.

http://doi.org/10.1007/s00234-006-0102-3

17. Castillo M., Smith J., Kwock, L. Correlation of myo-inositol

levels and grading of cerebral astrocytomas. AJNR. American

Journal of Neuroradiology 2000; 21(9): 1645–1649.

18. Price, S. Improved delineation of glioma margins and regions

of infiltration with the use of diffusion tensor imaging: an

image-guided biopsy study. Am. J. Neuroradiol 2006; 27:

1969–1974.

19 Muragaki Y., Chernov M., Maruyama T., Takakura, K.. Low-grade

glioma on stereotactic biopsy: how often is the diagnosis

accurate? Minimally Invasive Neurosurgery: MIN, 2008;

51(5): 275–279.

http://doi.org/10.1055/s-0028-1082322

20. Barajas R., Hodgson J., Chang J. Glioblastoma multiforme

regional genetic and cellular expression patterns: influence

on anatomic and physiologic MR imaging. Radiology 2010;

254(2): 564–576.

http://doi.org/10.1148/radiol.09090663

21. Murakami R., Hirai T., Sugahara T. Grading astrocytic

tumors by using apparent diffusion coefficient parameters:

superiority of a one- versus two-parameter pilot method.

Los autores declaran no tener conflictos de interés, en relación a este artículo.

[EVALUACIÓN DE GLIOMAS POR TÉCNICAS AVANZADAS DE RESONANCIA MAGNÉTICA - Dra. Cecilia Okuma MD, PhD y col.]