376
Radiology 2009; 251(3): 838–845.
http://doi.org/10.1148/radiol.2513080899
22. Ballangrud A. Magnetic resonance spectroscopy imaging in
radiotherapy planning for recurrent glioma. Med. Phys 2011;
38: 2724–2730.
http://doi.org/10.1118/1.357488423. Bagadia A., Purandare H., Misra B. K., Gupta S. Application
of magnetic resonance tractography in the perioperative
planning of patients with eloquent region intra-axial brain
lesions. J. Clin. Neurosci. 2011; 18: 633–639. http://doi.
org/10.1016/j.jocn.2010.08.02
24. Håberg, A., Kvistad, K. A., Unsgård, G., & Haraldseth, O..
Preoperative blood oxygen level-dependent functional
magnetic resonance imaging in patients with primary brain
tumors: clinical application and outcome. Neurosurgery,
2004; 54(4): 902-914-915.
25. Bartos R. Validity of primary motor area localization with fMRI
versus electrical cortical stimulation: a comparative study.
Acta Neurochir. (Wien) 2009; 151: 1071–1080. http://doi.
org/10.1007/s00701-009-0368-4
26. Brandes A., Tosoni A., Spagnolli F., Frezza G., Leonardi M.,
Calbucci F., et al. Disease progression or pseudoprogression
after concomitant radiochemotherapy treatment: pitfalls
in neurooncology. Neuro-Oncology 2008; 10(3): 361–367.
http://doi.org/10.1215/15228517-2008-00827. Radbruch A., Fladt J., Kickingereder P. Pseudoprogression in
patients with glioblastoma: clinical relevance despite low
incidence. Neuro-Oncology 2015; 17(1): 151–159. http://
doi.org/10.1093/neuonc/nou12928. Lacerda S., Law M. Magnetic resonance perfusion and
permeability imaging in brain tumors. Neuroimaging
Clinics of North America, 2009; 19(4): 527–557. http://doi.
org/10.1016/j.nic.2009.08.007
29. Barajas R., Chang J., Segal M., Parsa A., McDermott M., Berger
M., et al. Differentiation of Recurrent Glioblastoma Multiforme
from Radiation Necrosis after External Beam Radiation
Therapy with Dynamic Susceptibility-weighted Contrast-
enhanced Perfusion MR Imaging. Radiology 2009; 253(2):
486–496.
http://doi.org/10.1148/radiol.253209000730. KongD.,KimS.,KimE.Diagnosticdilemmaofpseudoprogression
in the treatment of newly diagnosed glioblastomas: the
role of assessing relative cerebral blood flow volume and
oxygen-6-methylguanine-DNA methyltransferase promoter
methylation status. AJNR. American Journal of Neuroradiology
2011; 32(2): 382–387.
http://doi.org/10.3174/ajnr.A228631. Kim H., Goh M., Kim N., Choi C., Kim S., Kim, J. Which
Combination of MR Imaging Modalities Is Best for Predicting
Recurrent Glioblastoma? Study of Diagnostic Accuracy and
Reproducibility. Radiology 2014; 273(3); 831–843. http://
doi.org/10.1148/radiol.1413286832. Gerstner E., McNamara M., Norden A., Lafrankie D., Wen, P.
Effect of adding temozolomide to radiation therapy on the
incidence of pseudo-progression. Journal of Neuro-Oncology
2009, 94(1), 97–101.
http://doi.org/10.1007/s11060-009-9809-4
33. Hu L., Eschbacher J., Heiserman J. Reevaluating the imaging
definition of tumor progression: perfusion MRI quantifies
recurrent glioblastoma tumor fraction, pseudoprogression,
and radiation necrosis to predict survival. Neuro-Oncology
2012; 14(7): 919–930.
http://doi.org/10.1093/neuonc/nos112
34. Farid N., Almeida-Freitas D., White N., McDonald C.
Restriction-Spectrum Imaging of Bevacizumab-Related
Necrosis in a Patient with GBM. Frontiers in Oncology 2013;
3: 258.
http://doi.org/10.3389/fonc.2013.00258.35. Yang I., Huh N., Smith Z., Han S., Parsa, A. Distinguishing Glioma
Recurrence from Treatment Effect After Radiochemotherapy
and Immunotherapy. Neurosurgery Clinics of North
America 2010; 21(1): 181–186.
http://doi.org/10.1016/j.nec.2009.08.003
36. Zhang H., Ma L., Wang Q., Zheng X., Wu C., Xu B. Role of
magnetic resonance spectroscopy for the differentiation
of recurrent glioma from radiation necrosis: A systematic
review and meta-analysis. European Journal of Radiology
2014;
83(12):
2181–2189.
http://doi.org/10.1016/j.ejrad.2014.09.01.8
37. de Groot J., Yung W. Bevacizumab and irinotecan in the
treatment of recurrent malignant gliomas. Cancer Journal
(Sudbury, Mass.), 2008; 14(5): 279–285. http://doi.
org/10.1097/PPO.0b013e3181867bd6
38. Yamasaki F., Kurisu K., Aoki T. Advantages of high b-value
diffusion-weighted imaging to diagnose pseudo-responses in
patients with recurrent glioma after bevacizumab treatment.
European Journal of Radiology 2012, 81(10), 2805–2810.
http://doi.org/10.1016/j.ejrad.2011.10.01839. Law M., Young R., Babb J. Gliomas: predicting time
to progression or survival with cerebral blood volume
measurements at dynamic susceptibility-weighted contrast-
enhanced perfusion MR imaging. Radiology 2008, 247(2),
490–498.
http://doi.org/10.1148/radiol.247207089840. Mangla R., Singh G., Ziegelitz D., Milano M., Korones D.,
Zhong, J., et al. Changes in Relative Cerebral Blood Volume
1 Month after Radiation-Temozolomide Therapy Can Help
Predict Overall Survival in Patients with Glioblastoma.
Radiology 2010; 256(2): 575–584.
http://doi.org/10.1148/radiol.10091440
41. Sorensen. A., Emblem K., Polaskova P., et al. Increased survival
of glioblastoma patients who respond to antiangiogenic
therapy with elevated blood perfusion. Cancer Research
2012; 72(2): 402–407.
http://doi.org/10.1158/0008-5472.CAN-11-2464
42. Hilario A., Sepulveda J., Perez-Nuñez A. A prognostic model
based on preoperative MRI predicts overall survival in
patients with diffuse gliomas. AJNR. American Journal
of Neuroradiology 2014; 35(6): 1096–1102. http://doi.
org/10.3174/ajnr.A3837
43. Pope W., Qiao X., Kim H. Apparent diffusion coefficient
histogram analysis stratifies progression-free and overall
survival in patients with recurrent GBM treated with
[REV. MED. CLIN. CONDES - 2017; 28(3) 360-377]