Previous Page  50 / 154 Next Page
Information
Show Menu
Previous Page 50 / 154 Next Page
Page Background

376

Radiology 2009; 251(3): 838–845.

http://doi.org/10.1148/

radiol.2513080899

22. Ballangrud A. Magnetic resonance spectroscopy imaging in

radiotherapy planning for recurrent glioma. Med. Phys 2011;

38: 2724–2730.

http://doi.org/10.1118/1.3574884

23. Bagadia A., Purandare H., Misra B. K., Gupta S. Application

of magnetic resonance tractography in the perioperative

planning of patients with eloquent region intra-axial brain

lesions. J. Clin. Neurosci. 2011; 18: 633–639. http://doi.

org/10.1016/j.jocn.2010.08.02

24. Håberg, A., Kvistad, K. A., Unsgård, G., & Haraldseth, O..

Preoperative blood oxygen level-dependent functional

magnetic resonance imaging in patients with primary brain

tumors: clinical application and outcome. Neurosurgery,

2004; 54(4): 902-914-915.

25. Bartos R. Validity of primary motor area localization with fMRI

versus electrical cortical stimulation: a comparative study.

Acta Neurochir. (Wien) 2009; 151: 1071–1080. http://doi.

org/10.1007/s00701-009-0368-4

26. Brandes A., Tosoni A., Spagnolli F., Frezza G., Leonardi M.,

Calbucci F., et al. Disease progression or pseudoprogression

after concomitant radiochemotherapy treatment: pitfalls

in neurooncology. Neuro-Oncology 2008; 10(3): 361–367.

http://doi.org/10.1215/15228517-2008-008

27. Radbruch A., Fladt J., Kickingereder P. Pseudoprogression in

patients with glioblastoma: clinical relevance despite low

incidence. Neuro-Oncology 2015; 17(1): 151–159. http://

doi.org/10.1093/neuonc/nou129

28. Lacerda S., Law M. Magnetic resonance perfusion and

permeability imaging in brain tumors. Neuroimaging

Clinics of North America, 2009; 19(4): 527–557. http://doi.

org/10.1016/j.nic.2009.08.007

29. Barajas R., Chang J., Segal M., Parsa A., McDermott M., Berger

M., et al. Differentiation of Recurrent Glioblastoma Multiforme

from Radiation Necrosis after External Beam Radiation

Therapy with Dynamic Susceptibility-weighted Contrast-

enhanced Perfusion MR Imaging. Radiology 2009; 253(2):

486–496.

http://doi.org/10.1148/radiol.2532090007

30. KongD.,KimS.,KimE.Diagnosticdilemmaofpseudoprogression

in the treatment of newly diagnosed glioblastomas: the

role of assessing relative cerebral blood flow volume and

oxygen-6-methylguanine-DNA methyltransferase promoter

methylation status. AJNR. American Journal of Neuroradiology

2011; 32(2): 382–387.

http://doi.org/10.3174/ajnr.A2286

31. Kim H., Goh M., Kim N., Choi C., Kim S., Kim, J. Which

Combination of MR Imaging Modalities Is Best for Predicting

Recurrent Glioblastoma? Study of Diagnostic Accuracy and

Reproducibility. Radiology 2014; 273(3); 831–843. http://

doi.org/10.1148/radiol.14132868

32. Gerstner E., McNamara M., Norden A., Lafrankie D., Wen, P.

Effect of adding temozolomide to radiation therapy on the

incidence of pseudo-progression. Journal of Neuro-Oncology

2009, 94(1), 97–101.

http://doi.org/10.1007/s11060-009-

9809-4

33. Hu L., Eschbacher J., Heiserman J. Reevaluating the imaging

definition of tumor progression: perfusion MRI quantifies

recurrent glioblastoma tumor fraction, pseudoprogression,

and radiation necrosis to predict survival. Neuro-Oncology

2012; 14(7): 919–930.

http://doi.org/10.1093/neuonc/

nos112

34. Farid N., Almeida-Freitas D., White N., McDonald C.

Restriction-Spectrum Imaging of Bevacizumab-Related

Necrosis in a Patient with GBM. Frontiers in Oncology 2013;

3: 258.

http://doi.org/10.3389/fonc.2013.00258.

35. Yang I., Huh N., Smith Z., Han S., Parsa, A. Distinguishing Glioma

Recurrence from Treatment Effect After Radiochemotherapy

and Immunotherapy. Neurosurgery Clinics of North

America 2010; 21(1): 181–186.

http://doi.org/10.1016/j.

nec.2009.08.003

36. Zhang H., Ma L., Wang Q., Zheng X., Wu C., Xu B. Role of

magnetic resonance spectroscopy for the differentiation

of recurrent glioma from radiation necrosis: A systematic

review and meta-analysis. European Journal of Radiology

2014;

83(12):

2181–2189.

http://doi.org/10.1016/j.

ejrad.2014.09.01.8

37. de Groot J., Yung W. Bevacizumab and irinotecan in the

treatment of recurrent malignant gliomas. Cancer Journal

(Sudbury, Mass.), 2008; 14(5): 279–285. http://doi.

org/10.1097/PPO.0b013e3181867bd6

38. Yamasaki F., Kurisu K., Aoki T. Advantages of high b-value

diffusion-weighted imaging to diagnose pseudo-responses in

patients with recurrent glioma after bevacizumab treatment.

European Journal of Radiology 2012, 81(10), 2805–2810.

http://doi.org/10.1016/j.ejrad.2011.10.018

39. Law M., Young R., Babb J. Gliomas: predicting time

to progression or survival with cerebral blood volume

measurements at dynamic susceptibility-weighted contrast-

enhanced perfusion MR imaging. Radiology 2008, 247(2),

490–498.

http://doi.org/10.1148/radiol.2472070898

40. Mangla R., Singh G., Ziegelitz D., Milano M., Korones D.,

Zhong, J., et al. Changes in Relative Cerebral Blood Volume

1 Month after Radiation-Temozolomide Therapy Can Help

Predict Overall Survival in Patients with Glioblastoma.

Radiology 2010; 256(2): 575–584.

http://doi.org/10.1148/

radiol.10091440

41. Sorensen. A., Emblem K., Polaskova P., et al. Increased survival

of glioblastoma patients who respond to antiangiogenic

therapy with elevated blood perfusion. Cancer Research

2012; 72(2): 402–407.

http://doi.org/10.1158/0008-

5472.CAN-11-2464

42. Hilario A., Sepulveda J., Perez-Nuñez A. A prognostic model

based on preoperative MRI predicts overall survival in

patients with diffuse gliomas. AJNR. American Journal

of Neuroradiology 2014; 35(6): 1096–1102. http://doi.

org/10.3174/ajnr.A3837

43. Pope W., Qiao X., Kim H. Apparent diffusion coefficient

histogram analysis stratifies progression-free and overall

survival in patients with recurrent GBM treated with

[REV. MED. CLIN. CONDES - 2017; 28(3) 360-377]