468
13. Need AC, Shashi V, Hitomi Y, et al. Clinical application of exome
sequencing in undiagnosed genetic conditions. J Med Genet
2012;49:353–361.
14. de Koning TJ, Jongbloed JD, Sikkema-Raddatz B, Sinke RJ. Targeted
next-generation sequencing panels for monogenetic disorders in
clinical diagnostics: the opportunities and challenges. Expert Rev
Mol Diagn. 2015 Jan;15(1):61-70.
15. Tzschach A, Grasshoff U, Beck-Woedl S, Dufke C, Bauer C, Kehrer M,
et al. Next-generation sequencing in X-linked intellectual disability.
Eur J Hum Genet. 2015 Feb 4. doi: 10.1038/ejhg.2015.5
16. Shin HY, Jang H, Han JH, Park HJ, Lee JH, Kim SW, et al. Targeted
next-generation sequencing for the genetic diagnosis of
dysferlinopathy. Neuromuscul Disord. 2015Mar 16. doi: 10.1016/j.
nmd.2015.03.006
17. Liu S, Wang H, Zhang L, Tang C, Jones L, Ye H, et al. Rapid detection
of genetic mutations in individual breast cancer patients by next-
generationDNA sequencing. HumGenomics. 2015 Feb8;9(1):2-10
18. Mutz KO, Heilkenbrinker A, Lönne M, Walter JG, Stahl F.
Transcriptome analysis using next-generation sequencing. Curr
Opin Biotechnol. 2013;24(1):22-30
19. Mills JD, Janitz M. Alternative splicing of mRNA in the molecular
pathology of neurodegenerative diseases. Neurobiol Aging.
2012;33(5):1012.e11-24.
20. Takahashi JS, Kumar V, Nakashe P, Koike N, Huang HC, Green CB,
et al. ChIP-seq and RNA-seq methods to study circadian control
of transcription in mammals. Methods Enzymol. 2015;551:285-
321
21. Masser DR, Stanford DR, Freeman WM. Targeted DNA methylation
analysis by next-generation sequencing. J Vis Exp. 2015 Feb 24;96-
107
22. 454 Sequencing Roche [Internet] Roche Diagnostics Corporation.
[Actualizado marzo 2015; citado 1 mayo 2015]. Disponible en:
http://www.454.com/23. Applied Biosystems [Internet]. [Actualizado 2014; citado 1 mayo
2015]. Disponible en:
http://www3.appliedbiosystems.com/cms/groups/ mcb_marketing/ documents/
24. Illumina [Internet]. [Actualizado 2015; citado 1 mayo 2015]
Disponible en:
http://www.illumina.com//systems/hiseq-3000-
4000.html
25. Pacific Biosciences [Internet]. [Actualizado 2014; citado 1 mayo
2015].
Disponible
en:
http://www.pacificbiosciences.com/products/smrt-technology/smrt-sequencing-advantage/
26. Oxford Nanopore technologies [Internet]. [Actualizado 2015; citado
1 mayo 2015]. Disponible en:
http://www.nanoporetech.com/27. International HapMap Project [Internet]. [Actualizado 2013; citado
1 mayo 2015]. Disponible en:
http://hapmap.ncbi.nlm.nih.gov/28. International HapMap 3 Consortium, Altshuler DM, Gibbs RA,
Peltonen L, Altshuler DM, Gibbs RA, et al. Integrating common
and rare genetic variation in diverse human populations. Nature.
2010;467(7311):52-8.
29. International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR,
Hinds DA, Stuve LL, et al. A second generation human haplotype
map of over 3.1 million SNPs. Nature. 2007; 449(7164):851-61
30. Buchanan CC, Torstenson ES, Bush WS, Ritchie MD. A comparison
of cataloged variation between International HapMap Consortium
and 1000 Genomes Project data. J Am Med Inform Assoc.
2012;19(2): 289-94.
31. 1000 genomes. A Deep Catalog of Human Genetic Variation.
[Internet]. [Actualizado 2012: citado 1 mayo 2015]. Disponible en:
http://www.1000genomes.org/32. Wood AR, Perry JR, Tanaka T, Hernandez DG, Zheng HF, Melzer D, et
al. Imputation of Variants fromthe 1000Genomes ProjectModestly
Improves Known Associations and Can Identify Low-frequency
Variant–Phenotype Associations Undetected by HapMap Based
Imputation. PLoS One. 2013; 8(5): e64343
33. International Cancer Genome Project. [Internet].[Actualizado 21
enero 2015: citado 2 mayo 2015]. Disponible en:
http://icgc.org/34. National Human Genome Research Institute. [Internet].
[Actualizado 8 abril 2015: citado 2 mayo 2015]. Disponible en:
http://www.genome.gov/encode/35. dbSNP Short Genetic Variations. [Internet]. [Actualizado 2014:
citado 2 mayo 2015]. Disponible en:
http://www.ncbi.nlm.nih.
gov/snp/
36. US National Library of Medicine National Institutes of Health
[Internet]. [Actualizado 2015: citado 2mayo 2015]. Disponible en:
http://www.ncbi.nlm.nih.gov/pubmed/37. Zhang W, Dolan ME. Impact of the 1000 genomes project on the
next wave of pharmacogenomic discovery. Pharmacogenomics.
2010;11(2):249-56
38. Sikkema-Raddatz B, Johansson LF, de Boer EN, Almomani R, Boven
LG, van den Berg MP, et al. Targeted Next-Generation Sequencing
can Replace Sanger Sequencing in Clinical Diagnostics. Hum
Mutat. 2013;34(7):1035-42.
39. Hernan I, Borràs E, de Sousa Dias M, Gamundi MJ, Mañé B, Llort G,
et al. Detection of genomic variations in BRCA1 and BRCA2 genes
by long-range PCR and next-generation sequencing. J Mol Diagn.
2012;14(3):286-93.
40. Wei X, Dai Y, Yu P, QuN, Lan Z, Hong X, et al. Targeted next-generation
sequencing as a comprehensive test for patients with and female
carriers of DMD/BMD: a multi-population diagnostic study. Eur J
Hum Genet. 2014; 22(1):110-8
41. Yohe S, Hauge A, Bunjer K, Kemmer T, Bower M, Schomaker M,
Onsongo G, et al. Clinical validation of targeted next-generation
sequencing for inherited disorders. Arch Pathol Lab Med. 2015
Feb;139(2):204-10.
42. Rehm H. Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, Deignan JL,
et al.; Working Group of the American College of Medical Genetics
and Genomics Laboratory Quality Assurance Commitee. ACMG
clinical laboratory standards for next-generation sequencing.
Genet Med. 2013;15(9):733-47
43. Ackerman MJ, Marcou CA, Tester DJ. Personalized Medicine: Genetic
Diagnosis for Inherited Cardiomyopathies/Channelopathies. Rev
Esp Cardiol. 2013;66(4):298-307
44. Meder B, Haas J, Keller A, Heid C, Just S, Borries A, et al. Targeted
next-generation sequencing for the molecular genetic diagnostics
of cardiomyopathies. Circ Cardiovasc Genet. 2011; 4(2):110-22
45. Richards S, Aziz N, Bale S, BickD, Das S, Voelkerding K et al. Standards
and guidelines for the interpretation of sequence variants: a
[REV. MED. CLIN. CONDES - 2015; 26(4) 458-469]