Previous Page  48 / 136 Next Page
Information
Show Menu
Previous Page 48 / 136 Next Page
Page Background

468

13. Need AC, Shashi V, Hitomi Y, et al. Clinical application of exome

sequencing in undiagnosed genetic conditions. J Med Genet

2012;49:353–361.

14. de Koning TJ, Jongbloed JD, Sikkema-Raddatz B, Sinke RJ. Targeted

next-generation sequencing panels for monogenetic disorders in

clinical diagnostics: the opportunities and challenges. Expert Rev

Mol Diagn. 2015 Jan;15(1):61-70.

15. Tzschach A, Grasshoff U, Beck-Woedl S, Dufke C, Bauer C, Kehrer M,

et al. Next-generation sequencing in X-linked intellectual disability.

Eur J Hum Genet. 2015 Feb 4. doi: 10.1038/ejhg.2015.5

16. Shin HY, Jang H, Han JH, Park HJ, Lee JH, Kim SW, et al. Targeted

next-generation sequencing for the genetic diagnosis of

dysferlinopathy. Neuromuscul Disord. 2015Mar 16. doi: 10.1016/j.

nmd.2015.03.006

17. Liu S, Wang H, Zhang L, Tang C, Jones L, Ye H, et al. Rapid detection

of genetic mutations in individual breast cancer patients by next-

generationDNA sequencing. HumGenomics. 2015 Feb8;9(1):2-10

18. Mutz KO, Heilkenbrinker A, Lönne M, Walter JG, Stahl F.

Transcriptome analysis using next-generation sequencing. Curr

Opin Biotechnol. 2013;24(1):22-30

19. Mills JD, Janitz M. Alternative splicing of mRNA in the molecular

pathology of neurodegenerative diseases. Neurobiol Aging.

2012;33(5):1012.e11-24.

20. Takahashi JS, Kumar V, Nakashe P, Koike N, Huang HC, Green CB,

et al. ChIP-seq and RNA-seq methods to study circadian control

of transcription in mammals. Methods Enzymol. 2015;551:285-

321

21. Masser DR, Stanford DR, Freeman WM. Targeted DNA methylation

analysis by next-generation sequencing. J Vis Exp. 2015 Feb 24;96-

107

22. 454 Sequencing Roche [Internet] Roche Diagnostics Corporation.

[Actualizado marzo 2015; citado 1 mayo 2015]. Disponible en:

http://www.454.com/

23. Applied Biosystems [Internet]. [Actualizado 2014; citado 1 mayo

2015]. Disponible en:

http://www3.appliedbiosystems.com/cms/

groups/ mcb_marketing/ documents/

24. Illumina [Internet]. [Actualizado 2015; citado 1 mayo 2015]

Disponible en:

http://www.illumina.com/

/systems/hiseq-3000-

4000.html

25. Pacific Biosciences [Internet]. [Actualizado 2014; citado 1 mayo

2015].

Disponible

en:

http://www.pacificbiosciences.com/

products/smrt-technology/smrt-sequencing-advantage/

26. Oxford Nanopore technologies [Internet]. [Actualizado 2015; citado

1 mayo 2015]. Disponible en:

http://www.nanoporetech.com/

27. International HapMap Project [Internet]. [Actualizado 2013; citado

1 mayo 2015]. Disponible en:

http://hapmap.ncbi.nlm.nih.gov/

28. International HapMap 3 Consortium, Altshuler DM, Gibbs RA,

Peltonen L, Altshuler DM, Gibbs RA, et al. Integrating common

and rare genetic variation in diverse human populations. Nature.

2010;467(7311):52-8.

29. International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR,

Hinds DA, Stuve LL, et al. A second generation human haplotype

map of over 3.1 million SNPs. Nature. 2007; 449(7164):851-61

30. Buchanan CC, Torstenson ES, Bush WS, Ritchie MD. A comparison

of cataloged variation between International HapMap Consortium

and 1000 Genomes Project data. J Am Med Inform Assoc.

2012;19(2): 289-94.

31. 1000 genomes. A Deep Catalog of Human Genetic Variation.

[Internet]. [Actualizado 2012: citado 1 mayo 2015]. Disponible en:

http://www.1000genomes.org/

32. Wood AR, Perry JR, Tanaka T, Hernandez DG, Zheng HF, Melzer D, et

al. Imputation of Variants fromthe 1000Genomes ProjectModestly

Improves Known Associations and Can Identify Low-frequency

Variant–Phenotype Associations Undetected by HapMap Based

Imputation. PLoS One. 2013; 8(5): e64343

33. International Cancer Genome Project. [Internet].[Actualizado 21

enero 2015: citado 2 mayo 2015]. Disponible en:

http://icgc.org/

34. National Human Genome Research Institute. [Internet].

[Actualizado 8 abril 2015: citado 2 mayo 2015]. Disponible en:

http://www.genome.gov/encode/

35. dbSNP Short Genetic Variations. [Internet]. [Actualizado 2014:

citado 2 mayo 2015]. Disponible en:

http://www.ncbi.nlm.nih

.

gov/snp/

36. US National Library of Medicine National Institutes of Health

[Internet]. [Actualizado 2015: citado 2mayo 2015]. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

37. Zhang W, Dolan ME. Impact of the 1000 genomes project on the

next wave of pharmacogenomic discovery. Pharmacogenomics.

2010;11(2):249-56

38. Sikkema-Raddatz B, Johansson LF, de Boer EN, Almomani R, Boven

LG, van den Berg MP, et al. Targeted Next-Generation Sequencing

can Replace Sanger Sequencing in Clinical Diagnostics. Hum

Mutat. 2013;34(7):1035-42.

39. Hernan I, Borràs E, de Sousa Dias M, Gamundi MJ, Mañé B, Llort G,

et al. Detection of genomic variations in BRCA1 and BRCA2 genes

by long-range PCR and next-generation sequencing. J Mol Diagn.

2012;14(3):286-93.

40. Wei X, Dai Y, Yu P, QuN, Lan Z, Hong X, et al. Targeted next-generation

sequencing as a comprehensive test for patients with and female

carriers of DMD/BMD: a multi-population diagnostic study. Eur J

Hum Genet. 2014; 22(1):110-8

41. Yohe S, Hauge A, Bunjer K, Kemmer T, Bower M, Schomaker M,

Onsongo G, et al. Clinical validation of targeted next-generation

sequencing for inherited disorders. Arch Pathol Lab Med. 2015

Feb;139(2):204-10.

42. Rehm H. Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, Deignan JL,

et al.; Working Group of the American College of Medical Genetics

and Genomics Laboratory Quality Assurance Commitee. ACMG

clinical laboratory standards for next-generation sequencing.

Genet Med. 2013;15(9):733-47

43. Ackerman MJ, Marcou CA, Tester DJ. Personalized Medicine: Genetic

Diagnosis for Inherited Cardiomyopathies/Channelopathies. Rev

Esp Cardiol. 2013;66(4):298-307

44. Meder B, Haas J, Keller A, Heid C, Just S, Borries A, et al. Targeted

next-generation sequencing for the molecular genetic diagnostics

of cardiomyopathies. Circ Cardiovasc Genet. 2011; 4(2):110-22

45. Richards S, Aziz N, Bale S, BickD, Das S, Voelkerding K et al. Standards

and guidelines for the interpretation of sequence variants: a

[REV. MED. CLIN. CONDES - 2015; 26(4) 458-469]