Table of Contents Table of Contents
Previous Page  55 / 116 Next Page
Information
Show Menu
Previous Page 55 / 116 Next Page
Page Background

763

REFERENCIAS BIBLIOGRáFICAS

1.

Doern C, Holfelder M, Automation and design of the clinical

microbiology laboratory. Jorgensen J, Pfarrell M, Carrol K,

Landry M, Funke G, Richter S, Warnock D. Manual of Clinical

Microbiology. 11th Ed, Washington DC, ASM Press 2015. Pag

44-53.

2. Burnham C, Dunne W., Greub G, Novak S, Patel R. Automation in

the Clinical Microbiology Laboratory. Clinical Chemistry 2013;

59: 1696-1702.

3. Clerc, O., Prod’hom, G., Vogne, C., Bizzini, A., Calandra, T., &

Greub, G. Impact of Matrix-Assisted Laser Desorption Ionization

Time-of-Flight Mass Spectrometry on the Clinical Management

of Patients With Gram-negative Bacteremia: A Prospective

Observational Study. Clin. Infect. Dis. 56 (8), 1101-1007, doi:

10.1093/cid/cis1204 (2013).

4. Neville, S. A. et al. Utility of matrix-assisted laser desorption

ionization-time of flight mass spectrometry following

introduction for routine laboratory bacterial identification. J.

Clin. Microbiol. 49 (8), 2980-4, doi: 10.1128/JCM.00431-11

(2011).

5. Carol C, Patel R. Systems for Identification of Bacteria and

Fungi. Jorgensen J, Pfarrell M, Carrol K, Landry M, Funke G,

Richter S, Warnock D. Manual of Clinical Microbiology. 11th Ed,

Washington DC, ASM Press 2015. Pag 29-43.

6. Mischnik A, Trampe M, Zimmermann S. Evaluation of the impact

os Automated Specimen Inoculation, using Previ Isola, on the

Quality of and Technical Time for Stool Cultures. Annals of

Laboratory Medicine 2015; 35:82-88.

7. Greub G, Prod¨hom G. Automation in Clinical bacteriology: what

system to choose? Clinical Microbiology and Infection 2011;

17:655-660.

8. Dekker, J. P., & Branda, J. A. MALDI-TOF Mass Spectrometry in

the Clinical Microbiology Laboratory. Clinical Microbiology

Newsletter. 2011;33 (12), 87-93.

9. Seng, P. et al. Ongoing revolution in bacteriology: routine

identification of bacteria by matrix-assisted laser desorption

ionization time-of-flight mass spectrometry. Clin. Infect. Dis.

2009; 49 (4), 543-51, doi: 10.1086/600885.

10. Bourbeau P, Ledeboer N. Automation in Clinical Microbiology.

Journal of Clinical Microbiology 2013; 51: 1658-1665.

11. Duggal S, Gaind R, Tandon N, Deb M, das Chugh T. Comparison

of an Automated System with Conventional Identification and

Antimicrobial Susceptibility testing ISRN Microbiology 2012.

12. Hervé B, Corvalan V, Hormazabal S, Salas A, Cabezas C,

Badilla N et al. Utilización de Espectometría de Masas para la

identificación precoz de hemocultivos positivos. Validación de un

algoritmo local. Rev. Chil de Infect 2015; 32:401-404.

13. Schmidt, V., Jarosch, A., März, P., Sander, C., Vacata, V., & Kalka-

Moll, W. Rapid identification of bacteria in positive blood culture

by matrix-assisted laser desorption ionization time-of-flight

mass spectrometry. Eur. J. Clin. Microbiol. Infect. Dis. 2012; 31

(3), 311-7, doi: 10.1007/s10096-011-1312-0.

14. Idelevich E, Schule I, Grunastel B, Wullenweber J, peters G, Becker

K. Rapid Identification of microorganisms from positive blood

cultures by MALDI-TOF mass spectrometry subsequent to very

short-term incubation on solid médium. 2014; 20:1001-6.

15. Jorgensen J, Ferraro M. Antimicrobial Susceptibility testing:

A review of General Principles and Contemporary Practices.

Clinical Infectious Diseases 2009; 49: 1749-55.

16. Nordmann P, Poirel L, Dortet L. Rapid detection of

Carbapenemase- producing Enterobacteriaceae. Emerging

Infectious Diseases 2012; 18:1503-1507.

17. Duggal S, Gaind R, Tandon ]N,Deb M, Das Chug . Comparison

of an Automated System with Conventional Identification and

Antimicrobial Susceptibility Testing. ISRN Microbiology 2012;

Article ID 107203, 4 pages.

18. Junkins A, Lockhart S, Heilmann K, Dohrn C, Von Stein D,

Winokur P. BD Phoenix and Vitek 2 Detection of mecA-mediated

Resistance in S.aureus with Cefoxitin. Journal of Clin Microb

2009;47: 2879-2882.

19. Sader H, Fritsche T, Jones R. Accuracy of Three automated Systems

(MicroScanWalkAway, VITEK and VITEK2) for susceptibility testing

of Pseudomonas aeruginosa against five Broad-Spectrum Beta

lactam agents. Journal of Clin Microb. 2006; 44:1101-1104.

20. Belkum A, Dunne M. Next-Generation Antimicrobial

Susceptibility Testing. Journal of Clin Microb 2013;51: 2018-

2024.

21. Rolain J, Mallet M, Fournier P, Raoult D, Real-time PCR for

universal antibiotic susceptibility testing. J of Antimicrob

Chemother 2004; 54:538-541.

22. Garcia L. Clinical Microbiology Procedures Handbook. Third

Edition , Washington DC , ASM Press 2010. Chapter 3.11.3

Respiratory Cultures From Cystic Fibrosis Patients.

23. CLSI: performance standards for Antimicrobial Susceptibility

Testing. Twenty fifth informational Supplement. CLSI document

M100-S25. Wayne, PA. Clinical and Laboratory standards

Institute: 2015.

24. CLSI: Analysis and Presentation of Cummulative Antimicrobial

Susceptibility Test Data: Approved Guideline. Second edition..

CLSI document M39-A2. Wayne, PA. Clinical and Laboratory

standards Institute: 2005.

[Nuevas tecnologías en diagnóstico microbiológico... - Dra. Beatrice Hervé E.]