Previous Page  111 / 144 Next Page
Information
Show Menu
Previous Page 111 / 144 Next Page
Page Background

391

[Neuroimágenes en enfermedad de Parkinson: Rol de la resonancia magnética, el SPECT y el PET -Dr. Carlos Juri C. y col.]

the differential diagnosis of Parkinson and tremor

syndromes: A critical assessment of 125 cases. J Neurol.

2011;258(12):2147–54.

46. Juri C, Chana P, Kramer V. Imaging Nigrostriatal Dopaminergic

Deficit in Holmes Tremor with 18F-PR04. MZ-PET/CT. Clin

Nucl Med. 2015;40(9):740–1.

47. Stoessl AJ. Developments in neuroimaging: Positron emission

tomography. Park Relat Disord. 2014;20(SUPPL.1).

48. Peng S, Doudet DJ, Dhawan V, Ma Y. Dopamine PET imaging

and parkinson disease. PET Clin. 2013;8(4):469–85.

49. Brooks DJ, Tambasco N. Imaging synucleinopathies. Mov

Disord. 2016;00(00):n/a – n/a.

50. Eckert T, Sailer M, Kaufmann J, Schrader C. Differentiation

of idiopathic Parkinson’s disease, multiple system atrophy,

progressive supranuclear palsy, and healthy controls using

magnetization transfer imaging. Neuroimage. 2004;21:229–

35. 
51.

Whone AL, Watts RL, Stoessl AJ, Davis M,

Reske S, Nahmias C, et al. Slower progression of Parkinson’s

disease with ropinirole versus levodopa: The REAL-PET study.

Ann Neurol. 2003;54(1):93–101.

52. Weingarten CP, Sundman MH, Hickey P, Chen N. Neuroscience

and Biobehavioral Reviews Neuroimaging of Parkinson ’ s

disease : Expanding views. Neurosci Biobehav Rev. Elsevier

Ltd; 2015;59:16–52.

53. Vlaar AMM, van Kroonenburgh MJPG, Kessels AGH, Weber

WEJ. Meta-analysis of the literature on diagnostic accuracy of

SPECT in parkinsonian syndromes. BMC Neurol. 2007;7:27.

54. Djang DSW, Janssen MJR, Bohnen N, Booij J, Henderson

TA, Herholz K, et al. SNM Practice Guideline for Dopamine

Transporter Imaging with 123I-Ioflupane SPECT 1.0. J Nucl

Med. 2012;53(1):154–63.

55. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W,

et al. MDS clinical diagnostic criteria for Parkinson’s disease.

Mov Disord. 2015;30(12):1591–601.

56. Juri C, Viviani P, Chana P. Features associated with the

development of non-motor manifestations in Parkinson’s

disease. Arq Neuropsiquiatr. 2008;66(1):22–5.

57. Politis M, Niccolini F. Serotonin in Parkinson’s disease. Vol.

277, Behavioural Brain Research. 2015. p. 136–45.

58. Paterson LM, Kornum BR, Nutt DJ, Pike VW, Knudsen GM. 5-HT

radioligands for human brain imaging with PET and SPECT.

Med Res Rev. 2013;33(1):54–111.

59. Varrone A, Svenningsson P, Marklund P, Fatouros-Bergman

H, Forsberg A, Halldin C, et al. 5-HT1B receptor imaging

and cognition: a positron emission tomography study in

control subjects and Parkinson’s disease patients. Synapse.

2015;69(7):365–74.

60. Politis M, Wu K, Loane C, Kiferle L, Molloy S, Brooks DJ, et al.

Staging of serotonergic dysfunction in Parkinson’s Disease: An

in vivo 11C-DASB PET study. Neurobiol Dis. 2010;40(1):216–

21.

61. Vijayakumar D, Jankovic J. Drug-Induced Dyskinesia, Part 1:

Treatment of Levodopa-Induced Dyskinesia. Drugs. Springer;

2016;1–19.

62. Perez-Lloret S, Barrantes FJ. Deficits in cholinergic

neurotransmission and their clinical correlates in

Parkinson’s disease. npj Park Dis. Nature Publishing Group;

2016;2(September 2015):16001.

63. Bohnen N, Kaufer D. Cortical cholinergic function is more

severely affected in parkinsonian dementia than in Alzheimer

disease: an in vivo positron emission tomographic study. Arch

Neurol. 2003;1745–8.

64. Müller M, Bohnen N. Cholinergic dysfunction in Parkinson’s

disease. Curr Neurol Neurosci Rep. 2013;13:1–9.

65. Weingarten CP, Sundman MH, Hickey P, Chen N kuei.

Neuroimaging of Parkinson’s disease: Expanding views.

Neurosci Biobehav Rev. Elsevier Ltd; 2015;59:16–52.

66. Kuhl D, Minoshima S. In vivo mapping of cholinergic terminals

in normal aging, Alzheimer’s disease, and Parkinson’s disease.

Ann Neurol. 1996;399–410.

67. Brooks DJ. Inflammation in Parkinson’s Disease: Scientific

and Clinical Aspects. In: Thomas M, editor. Cham: Springer

International Publishing; 2014. p. 205–16.

68. Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers

A, et al. In vivo imaging of microglial activation with [11C]

(R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol

Dis. 2006;21(2):404–12.

69. Klein H., de Witte L, Bransfield RC, De Deyn PP. PET Imaging

of Microglia Activation in Neuropsychiatric Disorders with

Potential Infectious Origin. In: PET and SPECT in Neurology.

2014. p. 739–56.

70. Poston KL, Eidelberg D. FDG PET in the Evaluation of

Parkinson’s Disease. PET Clin. 2010;5(1):55–64.

71. Bohnen NI, Koeppe R a, Minoshima S, Giordani B, Albin

RL, Frey K a, et al. Cerebral glucose metabolic features of

Parkinson disease and incident dementia: longitudinal study.

J Nucl Med. 2011;52(6):848–55.

72. Niethammer M, Feigin A, Eidelberg D. Functional

neuroimaging in Parkinson’s disease. Cold Spring Harb

Perspect Med. 2012;2(5).

73. Eckert T, Tang C, Ma Y, Brown N, Lin T, Frucht S, et al. Abnormal

metabolic networks in atypical parkinsonism. Mov Disord.

2008;23(5):727–33.

74. Tang CC, Poston KL, Dhawan V, Eidelberg D. Abnormalities

in metabolic network activity precede the onset of

motor symptoms in Parkinson’s disease. J Neurosci.

2010;30(3):1049–56.

75. Yoshita M. Value of MIBG in the Differential Diagnosis of

Neurodegenerative Disorders. In: PET and SPECT in Neurology.

Springer Berlin Heidelberg; 2014. p. 437–49.

76. Lehéricy S, Sharman MA, Santos CL Dos, Paquin R, Gallea

C. Magnetic resonance imaging of the substantia nigra in

Parkinson’s disease. Mov Disord. 2012;27(7):822–30.

77. Mahlknecht P, Hotter A, Hussl A, Esterhammer R, Schocke

M, Seppi K. Significance of MRI in diagnosis and differential

diagnosis of Parkinson’s disease. Vol. 7, Neurodegenerative

Diseases. 2010. p. 300–18.