Previous Page  15 / 176 Next Page
Information
Show Menu
Previous Page 15 / 176 Next Page
Page Background

659

5. Mashour, G.A., Woodrum, D.T. & Avidan, M.S. Neurological

complications of surgery and anaesthesia. Br J Anaesth 114,

2015; 194-203.

6. Urban, B.W. & Bleckwenn, M. Concepts and correlations relevant

to general anaesthesia. Br J Anaesth 89, 2002; 3-16.

7. Franks, N.P. Molecular targets underlying general anaesthesia.

Br J Pharmacol 147 Suppl 1, 2006; S72-81.

8. Campagna, J.A., Miller, K.W. & Forman, S.A. Mechanisms of

actions of inhaled anesthetics. N Engl J Med 348, 2003; 2110-

2124.

9. Rudolph, U. & Antkowiak, B. Molecular and neuronal substrates

for general anaesthetics. Nat Rev Neurosci 5, 2004; 709-720.

10. Miller’s Anesthesia, Eigth Edition, 2015.

11. Perouansky, M. The quest for a unified model of anesthetic

action: a century in Claude Bernard’s shadow. Anesthesiology

117, 2012; 465-474.

12. Meyer,H.ZurTheoriederAlkoholnarkose.ArchivfürExperimentelle

Pathologie und Pharmakologie 42, 1899; 109-118.

13. Meyer, H. Zur Theorie der Alkoholnarkose. Archiv f. experiment.

Pathol. u. Pharmakol 1901; 46, 9.

14. Meyer, K. Contributions to the theory of narcosis. Trans. Faraday

Soc. 1937; 33, 3.

15. Eger, E.I., 2nd, Saidman, L.J. & Brandstater, B. Minimum alveolar

anesthetic concentration: a standard of anesthetic potency.

Anesthesiology 26, 1965; 756-763.

16. Ueda, I. & Kamaya, H. Kinetic and thermodynamic aspects of the

mechanism of general anesthesia in a model system of firefly

luminescence in vitro. Anesthesiology 38, 1973; 425-436.

17. Franks, N.P. & Lieb, W.R. Do general anaesthetics act by

competitive binding to specific receptors? Nature 310, 1984;

599-601.

18. Raines, D.E. & Miller, K.W. On the importance of volatile agents

devoid of anesthetic action. Anesth Analg 79, 1994; 1031-

1033.

19. Lin, L.H., Chen, L.L., Zirrolli, J.A. & Harris, R.A. General anesthetics

potentiate

γ

-aminobutyric acid actions on

γ

-aminobutyric acid

A receptors expressed by Xenopus oocytes: lack of involvement

of intracellular calcium. J Pharmacol Exp Ther 263, 1992;

569-578.

20. Dwyer, R., Bennett, H.L., Eger, E.I., 2nd & Heilbron, D. Effects of

isoflurane and nitrous oxide in subanesthetic concentrations on

memory and responsiveness in volunteers. Anesthesiology 77,

1992; 888-898.

21. Stoelting, R.K., Longnecker, D.E. & Eger, E.I., 2nd. Minimum

alveolar concentrations in man on awakening from

methoxyflurane, halothane, ether and fluroxene anesthesia:

MAC awake. Anesthesiology 33,1970;5-9.

22. Koblin, D.D., et al. Polyhalogenated and perfluorinated

compounds that disobey the Meyer-Overton hypothesis. Anesth

Analg 79, 1994; 1043-1048.

23. Fang, Z., et al. Effects of inhaled nonimmobilizer, proconvulsant

compounds on desflurane minimum alveolar anesthetic

concentration in rats. Anesth Analg 85,1997;1149-1153.

24. Alkire, M.T., Hudetz, A.G. & Tononi, G. Consciousness and

anesthesia. Science 322, 2008; 876-880 .

25. Bettler, B., Kaupmann, K., Mosbacher, J. & Gassmann, M.

Molecular structure and physiological functions of GABAB

receptors. Physiol Rev 84, 2004; 835-867.

26. Olsen, R.W. & Sieghart, W. International Union of Pharmacology.

LXX. Subtypes of

γ

-aminobutyric acid A receptors: classification

on the basis of subunit composition, pharmacology, and

function. Update. Pharmacol Rev 60, 2008; 243-260.

27. Bonin, R.P. & Orser, B.A. GABAA receptor subtypes underlying

general anesthesia. Pharmacol Biochem Behav 90, 2008;

105-112.

28. Wang, D.S., Penna, A. &Orser, B.A. Ketamine Increases the Function

of

γ

-Aminobutyric Acid Type A Receptors in Hippocampal and

Cortical Neurons. Anesthesiology 126, 2017; 666-677.

29. Farrant, M. & Nusser, Z. Variations on an inhibitory theme: phasic

and tonic activation of GABAA receptors. Nat Rev Neurosci 6,

2005; 215-229.

30. Sigel, E. & Steinmann, M.E. Structure, function, and modulation

of GABAA receptors. J Biol Chem287, 2012; 40224-40231.

31. Forman, S.A. & Chin, V.A. General anesthetics and molecular

mechanisms of unconsciousness. Int Anesthesiol Clin 46, 2008;

43-53.

32. Hemmings, H.C., Jr., et al. Emerging molecular mechanisms

of general anesthetic action. Trends Pharmacol Sci 26, 2005;

503-510.

33. Hill-Venning, C., Belelli, D., Peters, J.A. & Lambert, J.J. Subunit-

dependent interaction of the general anaesthetic etomidate

with the

γ

-aminobutyric acid type A receptor. Br J Pharmacol

120, 1997; 749-756.

34. Jenkins, A., et al. Evidence for a common binding cavity for three

general anesthetics within the GABAA receptor. J Neurosci 21

2001; RC136.

35. Jurd, R., et al. General anesthetic actions in vivo strongly

attenuated by a point mutation in the GABAA receptor

β

3

subunit. FASEB J 17, 2003; 250-252.

36. Jacob, T.C., Moss, S.J. & Jurd, R. GABAA receptor trafficking and its

role in the dynamic modulation of neuronal inhibition. Nat Rev

Neurosci 9, 2008; 331-343.

37. Cheng, V.Y., et al.

α

5GABAA receptors mediate the amnestic

but not sedative-hypnotic effects of the general anesthetic

etomidate. J Neurosci 26, 2006; 3713-3720.

38. Goldstein, S.A., et al. International Union of Pharmacology. LV.

Nomenclature and molecular relationships of two-P potassium

channels. Pharmacol Rev 57, 2005; 527-540.

39. Patel, A.J., et al. Inhalational anesthetics activate two-pore-

domain background K+ channels. Nat Neurosci 2, 1999;

422-426.

40. Lodge, D. & Johnson, K.M. Noncompetitive excitatory amino acid

receptor antagonists. Trends Pharmacol Sci 11, 1990; 81-86.

41. Jevtovic-Todorovic, V., et al. Nitrous oxide (laughing gas) is an

NMDA antagonist, neuroprotectant and neurotoxin. Nat Med 4,

1998; 460-463.

42. Lynch, J.W. Molecular structure and function of the glycine

receptor chloride channel. Physiol Rev 84, 2004; 1051-1095.

[NEUROCIENCIA Y ANESTESIA - Dr. Antonello Penna MD PhD y col.]