Previous Page  16 / 176 Next Page
Information
Show Menu
Previous Page 16 / 176 Next Page
Page Background

660

43. Lynch, J.W. Native glycine receptor subtypes and their

physiological roles. Neuropharmacology 56, 2009; 303-309.

44. Harrison, N.L., Kugler, J.L., Jones, M.V., Greenblatt, E.P. & Pritchett,

D.B. Positive modulation of human

γ

-aminobutyric acid type A

and glycine receptors by the inhalation anesthetic isoflurane.

Mol Pharmacol 44, 1993; 628-632.

45. Borghese, C.M., et al. Mutations M287L and Q266I in the glycine

receptor

α

1 subunit change sensitivity to volatile anesthetics in

oocytes and neurons, but not the minimal alveolar concentration

in knockin mice. Anesthesiology 117, 2012; 765-771.

46. Tsantoulas, C., Mooney, E.R. & McNaughton, P.A. HCN2 ion

channels: basic science opens up possibilities for therapeutic

intervention in neuropathic pain. Biochem J 473, 2016; 2717-

2736.

47. Chen, X., Shu, S. & Bayliss, D.A. Suppression of Ih contributes

to propofol-induced inhibition of mouse cortical pyramidal

neurons. J Neurophysiol 94, 2005; 3872-3883.

48. Pal, D., Jones, J.M., Wisidagamage, S., Meisler, M.H. & Mashour,

G.A. Reduced Nav1.6 Sodium Channel Activity in Mice Increases

In Vivo Sensitivity to Volatile Anesthetics. PLoS One 10, 2015;

e0134960.

49. Sand, R.M., Gingrich, K.J., Macharadze, T., Herold, K.F. &

Hemmings, H.C., Jr. Isoflurane modulates activation and

inactivation gating of the prokaryotic Na+ channel NaChBac. J

Gen Physiol 149, 2017; 623-638.

50. Eger, E.I., 2nd, Raines, D.E., Shafer, S.L., Hemmings, H.C., Jr. &

Sonner, J.M. Is a new paradigm needed to explain how inhaled

anesthetics produce immobility? Anesth Analg 107, 2008 ;832-

848.

51. Nelson, L.E., et al. The sedative component of anesthesia is

mediated by GABAA receptors in an endogenous sleep pathway.

Nat Neurosci 5, 2002; 979-984.

52. Lee, U., et al. Disruption of frontal-parietal communication by

ketamine, propofol, and sevoflurane. Anesthesiology 118, 2013;

1264-1275.

53. Mashour, G.A. Top-down mechanisms of anesthetic-induced

unconsciousness. Front Syst Neurosci 8, 2014; 115.

54. Brown, E.N., Purdon, P.L. & Van Dort, C.J. General anesthesia and

altered states of arousal: a systems neuroscience analysis. Annu

Rev Neurosci 34,2011; 601-628.

55. Mesbah-Oskui, L. & Horner, R.L. Enhanced Thalamic Spillover

Inhibition during Non-rapid-eye-movement Sleep Triggers an

Electrocortical Signature of Anesthetic Hypnosis. Anesthesiology

125, 2016; 964-978.

56. Avramescu, S., et al. Inflammation Increases Neuronal Sensitivity

to General Anesthetics. Anesthesiology 124, 2016; 417-427.

57. Purdon, P.L., Sampson, A., Pavone, K.J. & Brown, E.N. Clinical

Electroencephalography for Anesthesiologists: Part I: Background

and Basic Signatures. Anesthesiology 123, 2015; 937-960.

58. Akeju, O., et al. Effects of sevoflurane and propofol on frontal

electroencephalogram power and coherence. Anesthesiology

121, 2014; 990-998.

59. Ching, S., Cimenser, A., Purdon, P.L., Brown, E.N. & Kopell, N.J.

Thalamocortical model for a propofol-induced

α

-rhythm

associated with loss of consciousness. Proc Natl Acad Sci U S A

107, 2010; 22665-22670.

60. Vijayan, S., Ching, S., Purdon, P.L., Brown, E.N. & Kopell, N.J.

Thalamocortical mechanisms for the anteriorization of

α

rhythms during propofol-induced unconsciousness. J Neurosci

33, 2013; 11070-11075.

61. Akeju, O., et al. Age-dependency of sevoflurane-induced

electroencephalogram dynamics in children. Br J Anaesth 115

Suppl 1, 2015; i66-i76.

62. Purdon, P.L., et al. The Ageing Brain: Age-dependent changes

in the electroencephalogram during propofol and sevoflurane

general anaesthesia. Br J Anaesth 115 Suppl 1, 2015; i46-i57.

63. Rampil, I.J. & Laster, M.J. No correlation between quantitative

electroencephalographic

measurements

and

movement

response to noxious stimuli during isoflurane anesthesia in rats.

Anesthesiology 77, 1992; 920-925.

64. Rampil, I.J. & King, B.S. Volatile anesthetics depress spinal motor

neurons. Anesthesiology 85, 1996; 129-134.

65. Sonner, J.M., et al. Inhaled anesthetics and immobility:

mechanisms, mysteries, and minimum alveolar anesthetic

concentration. Anesth Analg 97, 2003; 718-740.

66. Caraiscos, V.B., et al. Tonic inhibition in mouse hippocampal

CA1 pyramidal neurons is mediated by

α

5 subunit-containing

γ

-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A

101, 2004; 3662-3667.

[REV. MED. CLIN. CONDES - 2017; 28(5) 650-660]