660
43. Lynch, J.W. Native glycine receptor subtypes and their
physiological roles. Neuropharmacology 56, 2009; 303-309.
44. Harrison, N.L., Kugler, J.L., Jones, M.V., Greenblatt, E.P. & Pritchett,
D.B. Positive modulation of human
γ
-aminobutyric acid type A
and glycine receptors by the inhalation anesthetic isoflurane.
Mol Pharmacol 44, 1993; 628-632.
45. Borghese, C.M., et al. Mutations M287L and Q266I in the glycine
receptor
α
1 subunit change sensitivity to volatile anesthetics in
oocytes and neurons, but not the minimal alveolar concentration
in knockin mice. Anesthesiology 117, 2012; 765-771.
46. Tsantoulas, C., Mooney, E.R. & McNaughton, P.A. HCN2 ion
channels: basic science opens up possibilities for therapeutic
intervention in neuropathic pain. Biochem J 473, 2016; 2717-
2736.
47. Chen, X., Shu, S. & Bayliss, D.A. Suppression of Ih contributes
to propofol-induced inhibition of mouse cortical pyramidal
neurons. J Neurophysiol 94, 2005; 3872-3883.
48. Pal, D., Jones, J.M., Wisidagamage, S., Meisler, M.H. & Mashour,
G.A. Reduced Nav1.6 Sodium Channel Activity in Mice Increases
In Vivo Sensitivity to Volatile Anesthetics. PLoS One 10, 2015;
e0134960.
49. Sand, R.M., Gingrich, K.J., Macharadze, T., Herold, K.F. &
Hemmings, H.C., Jr. Isoflurane modulates activation and
inactivation gating of the prokaryotic Na+ channel NaChBac. J
Gen Physiol 149, 2017; 623-638.
50. Eger, E.I., 2nd, Raines, D.E., Shafer, S.L., Hemmings, H.C., Jr. &
Sonner, J.M. Is a new paradigm needed to explain how inhaled
anesthetics produce immobility? Anesth Analg 107, 2008 ;832-
848.
51. Nelson, L.E., et al. The sedative component of anesthesia is
mediated by GABAA receptors in an endogenous sleep pathway.
Nat Neurosci 5, 2002; 979-984.
52. Lee, U., et al. Disruption of frontal-parietal communication by
ketamine, propofol, and sevoflurane. Anesthesiology 118, 2013;
1264-1275.
53. Mashour, G.A. Top-down mechanisms of anesthetic-induced
unconsciousness. Front Syst Neurosci 8, 2014; 115.
54. Brown, E.N., Purdon, P.L. & Van Dort, C.J. General anesthesia and
altered states of arousal: a systems neuroscience analysis. Annu
Rev Neurosci 34,2011; 601-628.
55. Mesbah-Oskui, L. & Horner, R.L. Enhanced Thalamic Spillover
Inhibition during Non-rapid-eye-movement Sleep Triggers an
Electrocortical Signature of Anesthetic Hypnosis. Anesthesiology
125, 2016; 964-978.
56. Avramescu, S., et al. Inflammation Increases Neuronal Sensitivity
to General Anesthetics. Anesthesiology 124, 2016; 417-427.
57. Purdon, P.L., Sampson, A., Pavone, K.J. & Brown, E.N. Clinical
Electroencephalography for Anesthesiologists: Part I: Background
and Basic Signatures. Anesthesiology 123, 2015; 937-960.
58. Akeju, O., et al. Effects of sevoflurane and propofol on frontal
electroencephalogram power and coherence. Anesthesiology
121, 2014; 990-998.
59. Ching, S., Cimenser, A., Purdon, P.L., Brown, E.N. & Kopell, N.J.
Thalamocortical model for a propofol-induced
α
-rhythm
associated with loss of consciousness. Proc Natl Acad Sci U S A
107, 2010; 22665-22670.
60. Vijayan, S., Ching, S., Purdon, P.L., Brown, E.N. & Kopell, N.J.
Thalamocortical mechanisms for the anteriorization of
α
rhythms during propofol-induced unconsciousness. J Neurosci
33, 2013; 11070-11075.
61. Akeju, O., et al. Age-dependency of sevoflurane-induced
electroencephalogram dynamics in children. Br J Anaesth 115
Suppl 1, 2015; i66-i76.
62. Purdon, P.L., et al. The Ageing Brain: Age-dependent changes
in the electroencephalogram during propofol and sevoflurane
general anaesthesia. Br J Anaesth 115 Suppl 1, 2015; i46-i57.
63. Rampil, I.J. & Laster, M.J. No correlation between quantitative
electroencephalographic
measurements
and
movement
response to noxious stimuli during isoflurane anesthesia in rats.
Anesthesiology 77, 1992; 920-925.
64. Rampil, I.J. & King, B.S. Volatile anesthetics depress spinal motor
neurons. Anesthesiology 85, 1996; 129-134.
65. Sonner, J.M., et al. Inhaled anesthetics and immobility:
mechanisms, mysteries, and minimum alveolar anesthetic
concentration. Anesth Analg 97, 2003; 718-740.
66. Caraiscos, V.B., et al. Tonic inhibition in mouse hippocampal
CA1 pyramidal neurons is mediated by
α
5 subunit-containing
γ
-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A
101, 2004; 3662-3667.
[REV. MED. CLIN. CONDES - 2017; 28(5) 650-660]